The ultraviolet luminosity function of star-forming galaxies between redshifts of 0.6 and 1.2


Abstract in English

We use ultraviolet imaging taken with the XMM-Newton Optical Monitor telescope (XMM-OM), covering 280 square arcminutes in the UVW1 band (effective wavelength 2910 Angstroms) to measure rest-frame ultraviolet (1500 Angstrom) luminosity functions of galaxies with redshifts z between 0.6 and 1.2. The XMM-OM data are supplemented by a large body of optical and infrared imaging to provide photometric redshifts. The XMM-OM data have a significantly narrower point-spread-function (resulting in less source confusion) and simpler K-correction than the GALEX data previously employed in this redshift range. Ultraviolet-bright active galactic nuclei are excluded to ensure that the luminosity functions relate directly to the star-forming galaxy population. Binned luminosity functions and parametric Schechter-function fits are derived in two redshift intervals: 0.6<z<0.8 and 0.8<z<1.2. We find that the luminosity function evolves such that the characteristic absolute magnitude M* is brighter for 0.8<z<1.2 than for 0.6<z<0.8.

Download