Do you want to publish a course? Click here

Zero-shot Node Classification with Decomposed Graph Prototype Network

76   0   0.0 ( 0 )
 Added by Jialong Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Node classification is a central task in graph data analysis. Scarce or even no labeled data of emerging classes is a big challenge for existing methods. A natural question arises: can we classify the nodes from those classes that have never been seen? In this paper, we study this zero-shot node classification (ZNC) problem which has a two-stage nature: (1) acquiring high-quality class semantic descriptions (CSDs) for knowledge transfer, and (2) designing a well generalized graph-based learning model. For the first stage, we give a novel quantitative CSDs evaluation strategy based on estimating the real class relationships, so as to get the best CSDs in a completely automatic way. For the second stage, we propose a novel Decomposed Graph Prototype Network (DGPN) method, following the principles of locality and compositionality for zero-shot model generalization. Finally, we conduct extensive experiments to demonstrate the effectiveness of our solutions.



rate research

Read More

From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated attribute localization ability would be beneficial for zero-shot learning. To this end, we propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features using only class-level attributes. While a visual-semantic embedding layer learns global features, local features are learned through an attribute prototype network that simultaneously regresses and decorrelates attributes from intermediate features. We show that our locality augmented image representations achieve a new state-of-the-art on three zero-shot learning benchmarks. As an additional benefit, our model points to the visual evidence of the attributes in an image, e.g. for the CUB dataset, confirming the improved attribute localization ability of our image representation.
Incorporating external knowledge to Visual Question Answering (VQA) has become a vital practical need. Existing methods mostly adopt pipeline approaches with different components for knowledge matching and extraction, feature learning, etc.However, such pipeline approaches suffer when some component does not perform well, which leads to error propagation and poor overall performance. Furthermore, the majority of existing approaches ignore the answer bias issue -- many answers may have never appeared during training (i.e., unseen answers) in real-word application. To bridge these gaps, in this paper, we propose a Zero-shot VQA algorithm using knowledge graphs and a mask-based learning mechanism for better incorporating external knowledge, and present new answer-based Zero-shot VQA splits for the F-VQA dataset. Experiments show that our method can achieve state-of-the-art performance in Zero-shot VQA with unseen answers, meanwhile dramatically augment existing end-to-end models on the normal F-VQA task.
151 - Yun Li , Zhe Liu , Lina Yao 2021
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to semantically related unseen classes, which are absent during training. The promising strategies for ZSL are to synthesize visual features of unseen classes conditioned on semantic side information and to incorporate meta-learning to eliminate the models inherent bias towards seen classes. While existing meta generative approaches pursue a common model shared across task distributions, we aim to construct a generative network adaptive to task characteristics. To this end, we propose an Attribute-Modulated generAtive meta-model for Zero-shot learning (AMAZ). Our model consists of an attribute-aware modulation network, an attribute-augmented generative network, and an attribute-weighted classifier. Given unseen classes, the modulation network adaptively modulates the generator by applying task-specific transformations so that the generative network can adapt to highly diverse tasks. The weighted classifier utilizes the data quality to enhance the training procedure, further improving the model performance. Our empirical evaluations on four widely-used benchmarks show that AMAZ outperforms state-of-the-art methods by 3.8% and 3.1% in ZSL and generalized ZSL settings, respectively, demonstrating the superiority of our method. Our experiments on a zero-shot image retrieval task show AMAZs ability to synthesize instances that portray real visual characteristics.
Graphs are widely used to model the relational structure of data, and the research of graph machine learning (ML) has a wide spectrum of applications ranging from drug design in molecular graphs to friendship recommendation in social networks. Prevailing approaches for graph ML typically require abundant labeled instances in achieving satisfactory results, which is commonly infeasible in real-world scenarios since labeled data for newly emerged concepts (e.g., new categorizations of nodes) on graphs is limited. Though meta-learning has been applied to different few-shot graph learning problems, most existing efforts predominately assume that all the data from those seen classes is gold-labeled, while those methods may lose their efficacy when the seen data is weakly-labeled with severe label noise. As such, we aim to investigate a novel problem of weakly-supervised graph meta-learning for improving the model robustness in terms of knowledge transfer. To achieve this goal, we propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN) in this paper. Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data and extracts highly transferable meta-knowledge, which enables the model to quickly adapt to unseen tasks with few labeled instances. Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies on the task of weakly-supervised few-shot node classification.
The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on the training classes can be adapted to unseen classes. In this paper, we aim to optimize the attribute space for ZSL by training a propagation mechanism to refine the semantic attributes of each class based on its neighbors and related classes on a graph of classes. We show that the propagated attributes can produce classifiers for zero-shot classes with significantly improved performance in different ZSL settings. The graph of classes is usually free or very cheap to acquire such as WordNet or ImageNet classes. When the graph is not provided, given pre-defined semantic embeddings of the classes, we can learn a mechanism to generate the graph in an end-to-end manner along with the propagation mechanism. However, this graph-aided technique has not been well-explored in the literature. In this paper, we introduce the attribute propagation network (APNet), which is composed of 1) a graph propagation model generating attribute vector for each class and 2) a parameterized nearest neighbor (NN) classifier categorizing an image to the class with the nearest attribute vector to the images embedding. For better generalization over unseen classes, different from previous methods, we adopt a meta-learning strategy to train the propagation mechanism and the similarity metric for the NN classifier on multiple sub-graphs, each associated with a classification task over a subset of training classes. In experiments with two zero-shot learning settings and five benchmark datasets, APNet achieves either compelling performance or new state-of-the-art results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا