No Arabic abstract
While it is often assumed that the orbital transport is short-ranged due to strong crystal field potential and orbital quenching, we show that orbital propagation can be remarkably long-ranged in ferromagnets. In contrast to spin transport, which exhibits an oscillatory decaying behavior by spin dephasing, the injected orbital angular momentum does not oscillate and decays slowly. This unusual feature is attributed to nearly degenerate states in $mathbf{k}$-space, which form hot-spots for the intrinsic orbital response. We demonstrate this in a bilayer consisting of a nonmagnet and a ferromagnet, where the orbital Hall current is injected from a nonmagnet into a ferromagnet. Interaction of the orbital Hall current with the magnetization in the ferromagnet results in an intrinsic response of the orbital angular momentum which propagates far beyond the spin dephasing length. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital transport in orbitronic device applications.
We report electron transport measurements through nano-scale devices consisting of 1 to 3 Prussian blue analog (PBA) nanocrystals connected between two electrodes. We compare two types of cubic nanocrystals, CsCoFe (15 nm) and CsNiCr (6 nm), deposited on highly oriented pyrolytic graphite and contacted by conducting-AFM. The measured currents show an exponential dependence with the length of the PBA nano-device (up to 45 nm), with low decay factors b{eta}, in the range 0.11 - 0.18 nm-1 and 0.25 - 0.34 nm-1 for the CsCoFe and the CsNiCr nanocrystals, respectively. From the theoretical analysis of the current-voltage curve for the nano-scale device made of a single nanoparticle, we deduce that the electron transport is mediated by the localized d bands at around 0.5 eV from the electrode Fermi energy in the two cases. By comparison with previously reported ab-initio calculations, we tentatively identify the involved orbitals as the filled Fe(II)-t2g d band (HOMO) for CsCoFe and the half-filled Ni(II)-eg d band (SOMO) for CsNiCr. Conductance values measured for multi-nanoparticle nano-scale devices (2 and 3 nanocrystals between the electrodes) are consistent with a multi-step coherent tunneling in the off-resonance regime between adjacent PBAs, a simple model gives a strong coupling (around 0.1 - 0.25 eV) between the adjacent PBA nanocrystals, mediated by electrostatic interactions.
Excitons are elementary optical excitation in semiconductors. The ability to manipulate and transport these quasiparticles would enable excitonic circuits and devices for quantum photonic technologies. Recently, interlayer excitons in 2D semiconductors have emerged as a promising candidate for engineering excitonic devices due to long lifetime, large exciton binding energy, and gate tunability. However, the charge-neutral nature of the excitons leads to a weak response to the in-plane electric field and thus inhibits transport beyond the diffusion length. Here, we demonstrate the directional transport of interlayer excitons in bilayer WSe2 driven by the dynamic potential lattice induced by surface acoustic waves (SAW). We show that at 100 K, the SAW-driven excitonic transport is activated above a threshold acoustic power and reaches a distance at least ten times longer than the diffusion length, only limited by the device size. Temperature-dependent measurement reveals the transition from the diffusion-limited regime at low temperature to an acoustic field-driven regime at elevated temperature. Our work shows that acoustic waves are an effective, contact-free means to control exciton dynamics and transport, promising for realizing 2D materials-based excitonic devices such as exciton transistors, switches, and transducers.
In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational ($p/q$) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 10$^6$ cm$^2$V$^{-1}$s$^{-1}$ and the mean free path exceeding several micrometers. The exceptional quality of our devices allows us to show that Brown-Zak minibands are $4q$ times degenerate and all the degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1K. We also found negative bend resistance at $1/q$ fractions for electrical probes placed as far as several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in high fields along straight trajectories, just like electrons in zero field.
We report on the experimental observation of the non-linear analogue of the optical spin Hall effect under highly non-resonant circularly polarized excitation of an exciton polariton condensate in a GaAs/AlGaAs microcavity. Initially circularly polarized polariton condensates propagate over macroscopic distances while the collective condensate spins coherently precess around an effective magnetic field in the sample plane performing up to four complete revolutions.
In this work we use electrostatic control of quantum Hall ferromagnetic transitions in CdMnTe quantum wells to study electron transport through individual domain walls (DWs) induced at a specific location. These DWs are formed due to hybridization of two counter-propagating edge states with opposite spin polarization. Conduction through DWs is found to be symmetric under magnetic field direction reversal, consistent with the helical nature of these DWs. We observe that long domain walls are in the insulating regime with localization length 4 - 6~$mu$m. In shorter DWs the resistance saturates to a non-zero value at low temperatures. Mesoscopic resistance fluctuations in a magnetic field are investigated. The theoretical model of transport through impurity states within the gap induced by spin-orbit interactions agrees well with the experimental data. Helical DWs have required symmetry for the formation of synthetic p-wave superconductors. Achieved electrostatic control of a single helical domain wall is a milestone on the path to their reconfigurable network and ultimately to a demonstration of braiding of non-Abelian excitations.