Do you want to publish a course? Click here

Keep CALM and Improve Visual Feature Attribution

86   0   0.0 ( 0 )
 Added by Jae Myung Kim
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The class activation mapping, or CAM, has been the cornerstone of feature attribution methods for multiple vision tasks. Its simplicity and effectiveness have led to wide applications in the explanation of visual predictions and weakly-supervised localization tasks. However, CAM has its own shortcomings. The computation of attribution maps relies on ad-hoc calibration steps that are not part of the training computational graph, making it difficult for us to understand the real meaning of the attribution values. In this paper, we improve CAM by explicitly incorporating a latent variable encoding the location of the cue for recognition in the formulation, thereby subsuming the attribution map into the training computational graph. The resulting model, class activation latent mapping, or CALM, is trained with the expectation-maximization algorithm. Our experiments show that CALM identifies discriminative attributes for image classifiers more accurately than CAM and other visual attribution baselines. CALM also shows performance improvements over prior arts on the weakly-supervised object localization benchmarks. Our code is available at https://github.com/naver-ai/calm.



rate research

Read More

In this paper, we present a novel method for measurably adjusting the semantics of text while preserving its sentiment and fluency, a task we call semantic text exchange. This is useful for text data augmentation and the semantic correction of text generated by chatbots and virtual assistants. We introduce a pipeline called SMERTI that combines entity replacement, similarity masking, and text infilling. We measure our pipelines success by its Semantic Text Exchange Score (STES): the ability to preserve the original texts sentiment and fluency while adjusting semantic content. We propose to use masking (replacement) rate threshold as an adjustable parameter to control the amount of semantic change in the text. Our experiments demonstrate that SMERTI can outperform baseline models on Yelp reviews, Amazon reviews, and news headlines.
Attributing the output of a neural network to the contribution of given input elements is a way of shedding light on the black-box nature of neural networks. Due to the complexity of current network architectures, current gradient-based attribution methods provide very noisy or coarse results. We propose to prune a neural network for a given single input to keep only neurons that highly contribute to the prediction. We show that by input-specific pruning, network gradients change from reflecting local (noisy) importance information to global importance. Our proposed method is efficient and generates fine-grained attribution maps. We further provide a theoretical justification of the pruning approach relating it to perturbations and validate it through a novel experimental setup. Our method is evaluated by multiple benchmarks: sanity checks, pixel perturbation, and Remove-and-Retrain (ROAR). These benchmarks evaluate the method from different perspectives and our method performs better than other methods across all evaluations.
Visual Relationship Detection is defined as, given an image composed of a subject and an object, the correct relation is predicted. To improve the visual part of this difficult problem, ten preprocessing methods were tested to determine whether the widely used Union method yields the optimal results. Therefore, focusing solely on predicate prediction, no object detection and linguistic knowledge were used to prevent them from affecting the comparison results. Once fine-tuned, the Visual Geometry Group models were evaluated using Recall@1, per-predicate recall, activation maximisations, class activation maps, and error analysis. From this research it was found that using preprocessing methods such as the Union-Without-Background-and-with-Binary-mask (Union-WB-and-B) method yields significantly better results than the widely used Union method since, as designed, it enables the Convolutional Neural Network to also identify the subject and object in the convolutional layers instead of solely in the fully-connected layers.
Training the large deep neural networks that dominate NLP requires large datasets. Many of these are collected automatically or via crowdsourcing, and may exhibit systematic biases or annotation artifacts. By the latter, we mean correlations between inputs and outputs that are spurious, insofar as they do not represent a generally held causal relationship between features and classes; models that exploit such correlations may appear to perform a given task well, but fail on out of sample data. In this paper we propose methods to facilitate identification of training data artifacts, using new hybrid approaches that combine saliency maps (which highlight important input features) with instance attribution methods (which retrieve training samples influential to a given prediction). We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data, and use it to identify previously unreported artifacts in a few standard NLP datasets. We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice, with promising results. We make code for all methods and experiments in this paper available.
140 - Bo Liu , Qiulei Dong , Zhanyi Hu 2020
Recently, many zero-shot learning (ZSL) methods focused on learning discriminative object features in an embedding feature space, however, the distributions of the unseen-class features learned by these methods are prone to be partly overlapped, resulting in inaccurate object recognition. Addressing this problem, we propose a novel adversarial network to synthesize compact semantic visual features for ZSL, consisting of a residual generator, a prototype predictor, and a discriminator. The residual generator is to generate the visual feature residual, which is integrated with a visual prototype predicted via the prototype predictor for synthesizing the visual feature. The discriminator is to distinguish the synthetic visual features from the real ones extracted from an existing categorization CNN. Since the generated residuals are generally numerically much smaller than the distances among all the prototypes, the distributions of the unseen-class features synthesized by the proposed network are less overlapped. In addition, considering that the visual features from categorization CNNs are generally inconsistent with their semantic features, a simple feature selection strategy is introduced for extracting more compact semantic visual features. Extensive experimental results on six benchmark datasets demonstrate that our method could achieve a significantly better performance than existing state-of-the-art methods by 1.2-13.2% in most cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا