No Arabic abstract
In recent years the ubiquitous deployment of AI has posed great concerns in regards to algorithmic bias, discrimination, and fairness. Compared to traditional forms of bias or discrimination caused by humans, algorithmic bias generated by AI is more abstract and unintuitive therefore more difficult to explain and mitigate. A clear gap exists in the current literature on evaluating and mitigating bias in pruned neural networks. In this work, we strive to tackle the challenging issues of evaluating, mitigating, and explaining induced bias in pruned neural networks. Our paper makes three contributions. First, we propose two simple yet effective metrics, Combined Error Variance (CEV) and Symmetric Distance Error (SDE), to quantitatively evaluate the induced bias prevention quality of pruned models. Second, we demonstrate that knowledge distillation can mitigate induced bias in pruned neural networks, even with unbalanced datasets. Third, we reveal that model similarity has strong correlations with pruning induced bias, which provides a powerful method to explain why bias occurs in pruned neural networks. Our code is available at https://github.com/codestar12/pruning-distilation-bias
Building reliable machine learning systems requires that we correctly understand their level of confidence. Calibration measures the degree of accuracy in a models confidence and most research in calibration focuses on techniques to improve an empirical estimate of calibration error, ECE_bin. We introduce a simulation framework that allows us to empirically show that ECE_bin can systematically underestimate or overestimate the true calibration error depending on the nature of model miscalibration, the size of the evaluation data set, and the number of bins. Critically, we find that ECE_bin is more strongly biased for perfectly calibrated models. We propose a simple alternative calibration error metric, ECE_sweep, in which the number of bins is chosen to be as large as possible while preserving monotonicity in the calibration function. Evaluating our measure on distributions fit to neural network confidence scores on CIFAR-10, CIFAR-100, and ImageNet, we show that ECE_sweep produces a less biased estimator of calibration error and therefore should be used by any researcher wishing to evaluate the calibration of models trained on similar datasets.
Knowledge distillation has become one of the most important model compression techniques by distilling knowledge from larger teacher networks to smaller student ones. Although great success has been achieved by prior distillation methods via delicately designing various types of knowledge, they overlook the functional properties of neural networks, which makes the process of applying those techniques to new tasks unreliable and non-trivial. To alleviate such problem, in this paper, we initially leverage Lipschitz continuity to better represent the functional characteristic of neural networks and guide the knowledge distillation process. In particular, we propose a novel Lipschitz Continuity Guided Knowledge Distillation framework to faithfully distill knowledge by minimizing the distance between two neural networks Lipschitz constants, which enables teacher networks to better regularize student networks and improve the corresponding performance. We derive an explainable approximation algorithm with an explicit theoretical derivation to address the NP-hard problem of calculating the Lipschitz constant. Experimental results have shown that our method outperforms other benchmarks over several knowledge distillation tasks (e.g., classification, segmentation and object detection) on CIFAR-100, ImageNet, and PASCAL VOC datasets.
There has been rapidly growing interest in the use of algorithms in hiring, especially as a means to address or mitigate bias. Yet, to date, little is known about how these methods are used in practice. How are algorithmic assessments built, validated, and examined for bias? In this work, we document and analyze the claims and practices of companies offering algorithms for employment assessment. In particular, we identify vendors of algorithmic pre-employment assessments (i.e., algorithms to screen candidates), document what they have disclosed about their development and validation procedures, and evaluate their practices, focusing particularly on efforts to detect and mitigate bias. Our analysis considers both technical and legal perspectives. Technically, we consider the various choices vendors make regarding data collection and prediction targets, and explore the risks and trade-offs that these choices pose. We also discuss how algorithmic de-biasing techniques interface with, and create challenges for, antidiscrimination law.
Knowledge Distillation (KD) is a popular technique to transfer knowledge from a teacher model or ensemble to a student model. Its success is generally attributed to the privileged information on similarities/consistency between the class distributions or intermediate feature representations of the teacher model and the student model. However, directly pushing the student model to mimic the probabilities/features of the teacher model to a large extent limits the student model in learning undiscovered knowledge/features. In this paper, we propose a novel inheritance and exploration knowledge distillation framework (IE-KD), in which a student model is split into two parts - inheritance and exploration. The inheritance part is learned with a similarity loss to transfer the existing learned knowledge from the teacher model to the student model, while the exploration part is encouraged to learn representations different from the inherited ones with a dis-similarity loss. Our IE-KD framework is generic and can be easily combined with existing distillation or mutual learning methods for training deep neural networks. Extensive experiments demonstrate that these two parts can jointly push the student model to learn more diversified and effective representations, and our IE-KD can be a general technique to improve the student network to achieve SOTA performance. Furthermore, by applying our IE-KD to the training of two networks, the performance of both can be improved w.r.t. deep mutual learning. The code and models of IE-KD will be make publicly available at https://github.com/yellowtownhz/IE-KD.
Prior work has shown Convolutional Neural Networks (CNNs) trained on surrogate Computer Aided Design (CAD) models are able to detect and classify real-world artefacts from photographs. The applications of which support twinning of digital and physical assets in design, including rapid extraction of part geometry from model repositories, information search & retrieval and identifying components in the field for maintenance, repair, and recording. The performance of CNNs in classification tasks have been shown dependent on training data set size and number of classes. Where prior works have used relatively small surrogate model data sets ($<100$ models), the question remains as to the ability of a CNN to differentiate between models in increasingly large model repositories. This paper presents a method for generating synthetic image data sets from online CAD model repositories, and further investigates the capacity of an off-the-shelf CNN architecture trained on synthetic data to classify models as class size increases. 1,000 CAD models were curated and processed to generate large scale surrogate data sets, featuring model coverage at steps of 10$^{circ}$, 30$^{circ}$, 60$^{circ}$, and 120$^{circ}$ degrees. The findings demonstrate the capability of computer vision algorithms to classify artefacts in model repositories of up to 200, beyond this point the CNNs performance is observed to deteriorate significantly, limiting its present ability for automated twinning of physical to digital artefacts. Although, a match is more often found in the top-5 results showing potential for information search and retrieval on large repositories of surrogate models.