Demanding that charged Nariai black holes in (quasi-)de Sitter space decay without becoming super-extremal implies a lower bound on the masses of charged particles, known as the Festina Lente (FL) bound. In this paper we fix the $mathcal{O}(1)$ constant in the bound and elucidate various aspects of it, as well as extensions to $d>4$ and to situations with scalar potentials and dilatonic couplings. We also discuss phenomenological implications of FL including an explanation of why the Higgs potential cannot have a local minimum at the origin, thus explaining why the weak force must be broken. For constructions of meta-stable dS involving anti-brane uplift scenarios, even though the throat region is consistent with FL, the bound implies that we cannot have any light charged matter fields coming from any far away region in the compactified geometry, contrary to the fact that they are typically expected to arise in these scenarios. This strongly suggests that introduction of warped anti-branes in the throat cannot be decoupled from the bulk dynamics as is commonly assumed. Finally, we provide some evidence that in certain situations the FL bound can have implications even with gravity decoupled and illustrate this in the context of non-compact throats.