Do you want to publish a course? Click here

Confinement and Renormalization Group Equations in String-inspired Non-local Gauge Theories

245   0   0.0 ( 0 )
 Added by Anish Ghoshal
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As an extension of the weak perturbation theory obtained in recent analysis on infinite-derivative non-local non-Abelian gauge theories motivated from p-adic string field theory, and postulated as direction of UV-completion in 4-D Quantum Field Theory (QFT), here we investigate the confinement conditions and $beta-$function in the strong coupling regime. We extend the confinement criterion, previously obtained by Kugo and Ojima for the local theory based on the Becchi-Rouet-Stora-Tyutin (BRST) invariance, to the non-local theory, by using a set of exact solutions of the corresponding local theory. We show that the infinite-derivatives which are active in the UV provides finite contributions also in the infrared (IR) limit and provide a proof of confinement, granted by the absence of the Landau pole. The main difference with the local case is that the IR fixed point is moved to infinity. We also show that in the limit of the energy scale of non-locality $M rightarrow infty$ we reproduce the local theory results and see how asymptotic freedom is properly recovered.

rate research

Read More

350 - Benjamin Lillard 2017
We propose a new set of s-confining theories with product gauge groups and no tree-level superpotential, based on a model with one antisymmetric matter field and four flavors of quarks. For each product group we find a set of gauge-invariant operators which satisfy the t Hooft anomaly matching conditions, and we identify the dynamically generated superpotential which reproduces the classical constraints between operators. Several of these product gauge theories confine without breaking chiral symmetry, even in cases where the classical moduli space is quantum-modified. These results may be useful for composite model building, particularly in cases where small meson operators are absent, or for theories with multiple natural energy scales, and may provide new ways to break supersymmetry dynamically.
154 - R. Jackiw 1997
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
88 - Nick E. Mavromatos 2021
I review a string-inspired cosmological model with gravitational anomalies in its early epochs, which is based on fields from the (bosonic) massless gravitational multiplet of strings, in particular gravitons and Kalb Ramond (KR), string-model independent, axions (the dilaton is assumed constant). I show how condensation of primordial gravitational waves, which are generared at the very early eras immediately after the big bang, can lead to inflation of the so called running vacuum model (RVM) type, without external inflatons. The role of the slow-roll field is played by the KR axion, but it does not drive inflation. The non-linearities in the anomaly terms do. Chiral fermionic matter excitations appear at the end of this RVM inflation, as a result of the decay of the RVM vacuum, and are held responsible for the cancellation of the primordial gravitational anomalies. Chiral anomalies, however, survive in the post-inflationary epochs, and can lead to the generation of a non perturbative mass for the KR axion, which could thus play the role of dark matter in this Universe. As a result of the condensed gravitational anomaly, there is a Lorentz-invariance violating KR axion background, which remains undiluted during the RVM inflation, and can lead to baryogenesis through leptogenesis in the radiation era, in models with sterile right-handed neutrinos. I also discuss the phenomenology of the model in the modern era, paying particular attention to linking it with a version of RVM, called type II RVM, which arguably can alleviate observed tensions in the current-epoch cosmological data.
We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the special class of regulator functions that preserves the background field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions.
We examine the real-time dynamics of a system of one or more black holes interacting with long wavelength gravitational fields. We find that the (classical) renormalizability of the effective field theory that describes this system necessitates the introduction of a time dependent mass counterterm, and consequently the mass parameter must be promoted to a dynamical degree of freedom. To track the time evolution of this dynamical mass, we compute the expectation value of the energy-momentum tensor within the in-in formalism, and fix the time dependence by imposing energy-momentum conservation. Mass renormalization induces logarithmic ultraviolet divergences at quadratic order in the gravitational coupling, leading to a new time-dependent renormalization group (RG) equation for the mass parameter. We solve this RG equation and use the result to predict heretofore unknown high order logarithms in the energy distribution of gravitational radiation emitted from the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا