Multi-RIS Discrete-Phase Encoding for Interpath-Interference-Free Channel Estimation


Abstract in English

Reconfigurable intelligent surfaces (RISs) are one of the foremost technological enablers of future wireless systems. They improve communication and localization by providing a strong non-line-of-sight path to the receiver. In this paper, we propose a pilot transmission method to enable the receiver to separate signals arriving from different RISs and from the uncontrolled multipath. This facilitates channel estimation and localization, as the channel or its geometric parameters can be estimated for each path separately. Our method is based on designing temporal phase profiles that are orthogonal across RISs without affecting the RIS beamforming capabilities. We take into consideration the limited resolution of the RIS phase shifters and show that in the presence of this practical limitation, orthogonal phase profiles can be designed based on Butson-type Hadamard matrices. For a localization scenario, we show that with our proposed method the estimator can attain the theoretical lower bound even with one-bit RIS phase resolution.

Download