No Arabic abstract
A new fluid-driven soft robot hand in this study uses the idea of the bionics and has the anthropomorphic form, which is oriented to the flexible grasp function. The soft robot hand is composed of a new kind of multi-freedom soft finger and soft palm, which realizes the characteristic grasping function of forehand and backhand. Combined with the fine fluid control system, the soft hand can realize flexible grasping under high pressure, so as to realize flexible grasping operation for different types of target objects in the underwater environment. The soft robot hand was controlled based on water hydraulic platform, Finally, the soft robot hand and the fine fluid control system were connected to form the underwater soft robot hand experiment platform.
Soft robotic hands and grippers are increasingly attracting attention as a robotic end-effector. Compared with rigid counterparts, they are safer for human-robot and environment-robot interactions, easier to control, lower cost and weight, and more compliant. Current soft robotic hands have mostly focused on the soft fingers and bending actuators. However, the palm is also essential part for grasping. In this work, we propose a novel design of soft humanoid hand with pneumatic soft fingers and soft palm. The hand is inexpensive to fabricate. The configuration of the soft palm is based on modular design which can be easily applied into actuating all kinds of soft fingers before. The splaying of the fingers, bending of the whole palm, abduction and adduction of the thumb are implemented by the soft palm. Moreover, we present a new design of soft finger, called hybrid bending soft finger (HBSF). It can both bend in the grasping axis and deflect in the side-to-side axis as human-like motion. The functions of the HBSF and soft palm were simulated by SOFA framework. And their performance was tested in experiments. The 6 fingers with 1 to 11 segments were tested and analyzed. The versatility of the soft hand is evaluated and testified by the grasping experiments in real scenario according to Feix taxonomy. And the results present the diversity of grasps and show promise for grasping a variety of objects with different shapes and weights.
Researchers traditionally solve the computational problems through rigorous and deterministic algorithms called as Hard Computing. These precise algorithms have widely been realized using digital technology as an inherently reliable and accurate implementation platform, either in hardware or software forms. This rigid form of implementation which we refer as Hard Realization relies on strict algorithmic accuracy constraints dictated to digital design engineers. Hard realization admits paying as much as necessary implementation costs to preserve computation precision and determinism throughout all the design and implementation steps. Despite its prior accomplishments, this conventional paradigm has encountered serious challenges with todays emerging applications and implementation technologies. Unlike traditional hard computing, the emerging soft and bio-inspired algorithms do not rely on fully precise and deterministic computation. Moreover, the incoming nanotechnologies face increasing reliability issues that prevent them from being efficiently exploited in hard realization of applications. This article examines Soft Realization, a novel bio-inspired approach to design and implementation of an important category of applications noticing the internal brain structure. The proposed paradigm mitigates major weaknesses of hard realization by (1) alleviating incompatibilities with todays soft and bio-inspired algorithms such as artificial neural networks, fuzzy systems, and human sense signal processing applications, and (2) resolving the destructive inconsistency with unreliable nanotechnologies. Our experimental results on a set of well-known soft applications implemented using the proposed soft realization paradigm in both reliable and unreliable technologies indicate that significant energy, delay, and area savings can be obtained compared to the conventional implementation.
This article presents a new hand architecture with three under-actuated fingers. Each finger performs spatial movements to achieve more complex and varied grasping than the existing planar-movement fingers. The purpose of this hand is to grasp complex-shaped workpieces as they leave the machining centres. Among the taxonomy of grips, cylindrical and spherical grips are often used to grasp heavy objects. A combination of these two modes makes it possible to capture most of the workpieces machined with 5-axis machines. However, the change in grasping mode requires the fingers to reconfigure themselves to perform spatial movements. This solution requires the addition of two or three actuators to change the position of the fingers and requires sensors to recognize the shape of the workpiece and determine the type of grasp to be used. This article proposes to extend the notion of under-actuated fingers to spatial movements. After a presentation of the kinematics of the fingers, the problem of stability is discussed as well as the transmission of forces in this mechanism. The complete approach for calculating the stability conditions is presented from the study of Jacobian force transmission matrices. CAD representations of the hand and its behavior in spherical and cylindrical grips are presented.
This paper presents preliminary results of the design, development, and evaluation of a hand rehabilitation glove fabricated using lobster-inspired hybrid design with rigid and soft components for actuation. Inspired by the bending abdomen of lobsters, hybrid actuators are built with serially jointed rigid shells actuated by pressurized soft chambers inside to generate bending motions. Such bio-inspiration absorbs features from the classical rigid-bodied robotics with precisely-defined motion generation, as well as the emerging soft robotics with light-weight, physically safe, and adaptive actuation. The fabrication procedure is described, followed by experiments to mechanically characterize these actuators. Finally, an open-palm glove design integrated with these hybrid actuators is presented for a qualitative case study. A hand rehabilitation system is developed by learning patterns of the sEMG signals from the users forearm to train the assistive glove for hand rehabilitation exercises.
Soft actuators have drawn significant attention from researchers with an inherently compliant design to address the safety issues in physical human-robot interactions. However, they are also vulnerable and pose new challenges in the design, fabrication, and analysis due to their inherent material softness. In this paper, a novel hybrid actuator design is presented with bio-inspirations from the lobster, or crustaceans in a broader perspective. We enclose a soft chamber with rectangular cross-section using a series of articulated rigid shells to produce bending under pneumatic input. By mimicking the shell pattern of lobsters abdomen, foldable rigid shells are designed to provide the soft actuator with full protection throughout the motion range. The articulation of the rigid shells predefines the actuators bending motions. As a result, the proposed design enables one to analyze this hybrid actuator with simplified quasi-static models and rigid-body kinematics, which are further validated by mechanical tests. This paper demonstrates that the proposed hybrid actuator design is capable of bridging the major design drawbacks of the entirely rigid and soft robots while preserving their engineering merits in performance.