Tunable photon blockade in a two-mode second-order nonlinear system embedded with a two-level atom


Abstract in English

The conventional photon blockade for high-frequency mode is investigated in a two-mode second-order nonlinear system embedded with a two-level atom. By solving the master equation and calculating the zero-delay-time second-order correlation function $g^{(2)}(0)$, we obtain that strong photon antibunching can be achieved in this scheme. In particular, we find that by increasing the linear coupling coefficient of the system, a perfect blockade region will be formed near the zero second-order nonlinear coupling coefficient. Similarly, by increasing the nonlinear coupling coefficient of the system, the perfect blockade zone will appear. And this scheme is not sensitive to the reservoir temperature, both of which make the current system easier to implement experimentally.

Download