Do you want to publish a course? Click here

A Free Lunch From ANN: Towards Efficient, Accurate Spiking Neural Networks Calibration

197   0   0.0 ( 0 )
 Added by Yuhang Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Spiking Neural Network (SNN) has been recognized as one of the next generation of neural networks. Conventionally, SNN can be converted from a pre-trained ANN by only replacing the ReLU activation to spike activation while keeping the parameters intact. Perhaps surprisingly, in this work we show that a proper way to calibrate the parameters during the conversion of ANN to SNN can bring significant improvements. We introduce SNN Calibration, a cheap but extraordinarily effective method by leveraging the knowledge within a pre-trained Artificial Neural Network (ANN). Starting by analyzing the conversion error and its propagation through layers theoretically, we propose the calibration algorithm that can correct the error layer-by-layer. The calibration only takes a handful number of training data and several minutes to finish. Moreover, our calibration algorithm can produce SNN with state-of-the-art architecture on the large-scale ImageNet dataset, including MobileNet and RegNet. Extensive experiments demonstrate the effectiveness and efficiency of our algorithm. For example, our advanced pipeline can increase up to 69% top-1 accuracy when converting MobileNet on ImageNet compared to baselines. Codes are released at https://github.com/yhhhli/SNN_Calibration.



rate research

Read More

Spiking Neural Networks (SNNs), as bio-inspired energy-efficient neural networks, have attracted great attentions from researchers and industry. The most efficient way to train deep SNNs is through ANN-SNN conversion. However, the conversion usually suffers from accuracy loss and long inference time, which impede the practical application of SNN. In this paper, we theoretically analyze ANN-SNN conversion and derive sufficient conditions of the optimal conversion. To better correlate ANN-SNN and get greater accuracy, we propose Rate Norm Layer to replace the ReLU activation function in source ANN training, enabling direct conversion from a trained ANN to an SNN. Moreover, we propose an optimal fit curve to quantify the fit between the activation value of source ANN and the actual firing rate of target SNN. We show that the inference time can be reduced by optimizing the upper bound of the fit curve in the revised ANN to achieve fast inference. Our theory can explain the existing work on fast reasoning and get better results. The experimental results show that the proposed method achieves near loss less conversion with VGG-16, PreActResNet-18, and deeper structures. Moreover, it can reach 8.6x faster reasoning performance under 0.265x energy consumption of the typical method. The code is available at https://github.com/DingJianhao/OptSNNConvertion-RNL-RIL.
Spiking neural networks (SNNs) offer an inherent ability to process spatial-temporal data, or in other words, realworld sensory data, but suffer from the difficulty of training high accuracy models. A major thread of research on SNNs is on converting a pre-trained convolutional neural network (CNN) to an SNN of the same structure. State-of-the-art conversion methods are approaching the accuracy limit, i.e., the near-zero accuracy loss of SNN against the original CNN. However, we note that this is made possible only when significantly more energy is consumed to process an input. In this paper, we argue that this trend of energy for accuracy is not necessary -- a little energy can go a long way to achieve the near-zero accuracy loss. Specifically, we propose a novel CNN-to-SNN conversion method that is able to use a reasonably short spike train (e.g., 256 timesteps for CIFAR10 images) to achieve the near-zero accuracy loss. The new conversion method, named as explicit current control (ECC), contains three techniques (current normalisation, thresholding for residual elimination, and consistency maintenance for batch-normalisation), in order to explicitly control the currents flowing through the SNN when processing inputs. We implement ECC into a tool nicknamed SpKeras, which can conveniently import Keras CNN models and convert them into SNNs. We conduct an extensive set of experiments with the tool -- working with VGG16 and various datasets such as CIFAR10 and CIFAR100 -- and compare with state-of-the-art conversion methods. Results show that ECC is a promising method that can optimise over energy consumption and accuracy loss simultaneously.
To facilitate a wide-spread acceptance of AI systems guiding decision making in real-world applications, trustworthiness of deployed models is key. That is, it is crucial for predictive models to be uncertainty-aware and yield well-calibrated (and thus trustworthy) predictions for both in-domain samples as well as under domain shift. Recent efforts to account for predictive uncertainty include post-processing steps for trained neural networks, Bayesian neural networks as well as alternative non-Bayesian approaches such as ensemble approaches and evidential deep learning. Here, we propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift. We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions for a wide range of domain drifts. We comprehensively evaluate previously proposed approaches on different data modalities, a large range of data sets including sequence data, network architectures and perturbation strategies. We observe that our modelling approach substantially outperforms existing state-of-the-art approaches, yielding well-calibrated predictions under domain drift.
Spiking neural networks (SNNs) have advantages in latency and energy efficiency over traditional artificial neural networks (ANNs) due to its event-driven computation mechanism and replacement of energy-consuming weight multiplications with additions. However, in order to reach accuracy of its ANN counterpart, it usually requires long spike trains to ensure the accuracy. Traditionally, a spike train needs around one thousand time steps to approach similar accuracy as its ANN counterpart. This offsets the computation efficiency brought by SNNs because longer spike trains mean a larger number of operations and longer latency. In this paper, we propose a radix encoded SNN with ultra-short spike trains. In the new model, the spike train takes less than ten time steps. Experiments show that our method demonstrates 25X speedup and 1.1% increment on accuracy, compared with the state-of-the-art work on VGG-16 network architecture and CIFAR-10 dataset.
Spiking neural networks (SNNs) are considered as a potential candidate to overcome current challenges such as the high-power consumption encountered by artificial neural networks (ANNs), however there is still a gap between them with respect to the recognition accuracy on practical tasks. A conversion strategy was thus introduced recently to bridge this gap by mapping a trained ANN to an SNN. However, it is still unclear that to what extent this obtained SNN can benefit both the accuracy advantage from ANN and high efficiency from the spike-based paradigm of computation. In this paper, we propose two new conversion methods, namely TerMapping and AugMapping. The TerMapping is a straightforward extension of a typical threshold-balancing method with a double-threshold scheme, while the AugMapping additionally incorporates a new scheme of augmented spike that employs a spike coefficient to carry the number of typical all-or-nothing spikes occurring at a time step. We examine the performance of our methods based on MNIST, Fashion-MNIST and CIFAR10 datasets. The results show that the proposed double-threshold scheme can effectively improve accuracies of the converted SNNs. More importantly, the proposed AugMapping is more advantageous for constructing accurate, fast and efficient deep SNNs as compared to other state-of-the-art approaches. Our study therefore provides new approaches for further integration of advanced techniques in ANNs to improve the performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic computing.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا