Do you want to publish a course? Click here

A public transit network optimization model for equitable access to social services

109   0   0.0 ( 0 )
 Added by Adam Rumpf
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a flexible public transit network design model which optimizes a social access objective while guaranteeing that the systems costs and transit times remain within a preset margin of their current levels. The purpose of the model is to find a set of minor, immediate modifications to an existing bus network that can give more communities access to the chosen services while having a minimal impact on the current networks operator costs and user costs. Design decisions consist of reallocation of existing resources in order to adjust line frequencies and capacities. We present a hybrid tabu search/simulated annealing algorithm for the solution of this optimization-based model. As a case study we apply the model to the problem of improving equity of access to primary health care facilities in the Chicago metropolitan area. The results of the model suggest that it is possible to achieve better primary care access equity through reassignment of existing buses and implementation of express runs, while leaving overall service levels relatively unaffected.

rate research

Read More

Many special events, including sport games and concerts, often cause surges in demand and congestion for transit systems. Therefore, it is important for transit providers to understand their impact on disruptions, delays, and fare revenues. This paper proposes a suite of data-driven techniques that exploit Automated Fare Collection (AFC) data for evaluating, anticipating, and managing the performance of transit systems during recurring congestion peaks due to special events. This includes an extensive analysis of ridership of the two major stadiums in downtown Atlanta using rail data from the Metropolitan Atlanta Rapid Transit Authority (MARTA). The paper first highlights the ridership predictability at the aggregate level for each station on both event and non-event days. It then presents an unsupervised machine-learning model to cluster passengers and identify which train they are boarding. The model makes it possible to evaluate system performance in terms of fundamental metrics such as the passenger load per train and the wait times of riders. The paper also presents linear regression and random forest models for predicting ridership that are used in combination with historical throughput analysis to forecast demand. Finally, simulations are performed that showcase the potential improvements to wait times and demand matching by leveraging proposed techniques to optimize train frequencies based on forecasted demand.
With the increasing adoption of Automatic Vehicle Location (AVL) and Automatic Passenger Count (APC) technologies by transit agencies, a massive amount of time-stamped and location-based passenger boarding and alighting count data can be collected on a continuous basis. The availability of such large-scale transit data offers new opportunities to produce estimates for Origin-Destination (O-D) flows, helping inform transportation planning and transit management. However, the state-of-the-art methodologies for AVL/APC data analysis mostly tackle the O-D flow estimation problem within routes and barely infer the transfer activities across the entire transit network. This paper proposes three optimization models to identify transfers and approximate network-level O-D flows by minimizing the deviations between estimated and observed proportions or counts of transferring passengers: A Quadratic Integer Program (QIP), a feasible rounding procedure for the Quadratic Convex Programming (QCP) relaxation of the QIP, and an Integer Program (IP). The inputs of the models are readily available by applying the various route-level flow estimation algorithms to the automatically collected AVL/APC data and the output of the models is a network O-D estimation at varying geographical resolutions. The optimization models were evaluated on a case study for Ann Arbor-Ypsilanti area in Michigan. The IP model outperforms the QCP approach in terms of accuracy and remains tractable from an efficiency standpoint, contrary to the QIP. Its estimated O-D matrix achieves an R-Squared metric of 95.57% at the Traffic Analysis Zone level and 92.39% at the stop level, compared to the ground-truth estimates inferred from the state-of-practice trip-chaining methods.
We propose a power-law decay model with autocorrelation for posting data to social networking services concerning particular events such as national holidays or major sport events. In these kinds of events we observe peoples interest both before and after the events. In our model the number of postings has a Poisson distribution whose expected value decays as a power law. Our model also incorporates autocorrelations by autoregressive specification of the expected value. We show that our proposed model well fits the data from social networking services.
62 - Amit Verma , Mark Lewis 2021
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables needed for conversion of inequalities. This transformation can lead to a significant increase in the size and density of the problem. Herein, we propose an efficient approach for recasting inequality constraints that reduces the number of linear and quadratic variables. Experimental results illustrate the efficacy.
We consider a linear relaxation of a generalized minimum-cost network flow problem with binary input dependencies. In this model the flows through certain arcs are bounded by linear (or more generally, piecewise linear concave) functions of the flows through other arcs. This formulation can be used to model interrelated systems in which the components of one system require the delivery of material from another system in order to function (for example, components of a subway system may require delivery of electrical power from a separate system). We propose and study randomized rounding schemes for how this model can be used to approximate solutions to a related mixed integer linear program for modeling binary input dependencies. The introduction of side constraints prevents this problem from being solved using the well-known network simplex algorithm, however by characterizing its basis structure we develop a generalization of network simplex algorithm that can be used for its efficient solution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا