No Arabic abstract
Trust region methods are widely applied in single-agent reinforcement learning problems due to their monotonic performance-improvement guarantee at every iteration. Nonetheless, when applied in multi-agent settings, the guarantee of trust region methods no longer holds because an agents payoff is also affected by other agents adaptive behaviors. To tackle this problem, we conduct a game-theoretical analysis in the policy space, and propose a multi-agent trust region learning method (MATRL), which enables trust region optimization for multi-agent learning. Specifically, MATRL finds a stable improvement direction that is guided by the solution concept of Nash equilibrium at the meta-game level. We derive the monotonic improvement guarantee in multi-agent settings and empirically show the local convergence of MATRL to stable fixed points in the two-player rotational differential game. To test our method, we evaluate MATRL in both discrete and continuous multiplayer general-sum games including checker and switch grid worlds, multi-agent MuJoCo, and Atari games. Results suggest that MATRL significantly outperforms strong multi-agent reinforcement learning baselines.
The development of intelligent traffic light control systems is essential for smart transportation management. While some efforts have been made to optimize the use of individual traffic lights in an isolated way, related studies have largely ignored the fact that the use of multi-intersection traffic lights is spatially influenced and there is a temporal dependency of historical traffic status for current traffic light control. To that end, in this paper, we propose a novel SpatioTemporal Multi-Agent Reinforcement Learning (STMARL) framework for effectively capturing the spatio-temporal dependency of multiple related traffic lights and control these traffic lights in a coordinating way. Specifically, we first construct the traffic light adjacency graph based on the spatial structure among traffic lights. Then, historical traffic records will be integrated with current traffic status via Recurrent Neural Network structure. Moreover, based on the temporally-dependent traffic information, we design a Graph Neural Network based model to represent relationships among multiple traffic lights, and the decision for each traffic light will be made in a distributed way by the deep Q-learning method. Finally, the experimental results on both synthetic and real-world data have demonstrated the effectiveness of our STMARL framework, which also provides an insightful understanding of the influence mechanism among multi-intersection traffic lights.
Following the remarkable success of the AlphaGO series, 2019 was a booming year that witnessed significant advances in multi-agent reinforcement learning (MARL) techniques. MARL corresponds to the learning problem in a multi-agent system in which multiple agents learn simultaneously. It is an interdisciplinary domain with a long history that includes game theory, machine learning, stochastic control, psychology, and optimisation. Although MARL has achieved considerable empirical success in solving real-world games, there is a lack of a self-contained overview in the literature that elaborates the game theoretical foundations of modern MARL methods and summarises the recent advances. In fact, the majority of existing surveys are outdated and do not fully cover the recent developments since 2010. In this work, we provide a monograph on MARL that covers both the fundamentals and the latest developments in the research frontier. The goal of our monograph is to provide a self-contained assessment of the current state-of-the-art MARL techniques from a game theoretical perspective. We expect this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing domain and existing domain experts who want to obtain a panoramic view and identify new directions based on recent advances.
To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents policies during training, failing to sufficiently generalize during execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe an algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game-theoretic analysis to compute meta-strategies for policy selection. The algorithm generalizes previous ones such as InRL, iterated best response, double oracle, and fictitious play. Then, we present a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in two partially observable settings: gridworld coordination games and poker.
Reinforcement Learning(RL) with sparse rewards is a major challenge. We propose emph{Hindsight Trust Region Policy Optimization}(HTRPO), a new RL algorithm that extends the highly successful TRPO algorithm with emph{hindsight} to tackle the challenge of sparse rewards. Hindsight refers to the algorithms ability to learn from information across goals, including ones not intended for the current task. HTRPO leverages two main ideas. It introduces QKL, a quadratic approximation to the KL divergence constraint on the trust region, leading to reduced variance in KL divergence estimation and improved stability in policy update. It also presents Hindsight Goal Filtering(HGF) to select conductive hindsight goals. In experiments, we evaluate HTRPO in various sparse reward tasks, including simple benchmarks, image-based Atari games, and simulated robot control. Ablation studies indicate that QKL and HGF contribute greatly to learning stability and high performance. Comparison results show that in all tasks, HTRPO consistently outperforms both TRPO and HPG, a state-of-the-art algorithm for RL with sparse rewards.
We present a multi-agent learning algorithm, ALMA-Learning, for efficient and fair allocations in large-scale systems. We circumvent the traditional pitfalls of multi-agent learning (e.g., the moving target problem, the curse of dimensionality, or the need for mutually consistent actions) by relying on the ALMA heuristic as a coordination mechanism for each stage game. ALMA-Learning is decentralized, observes only own action/reward pairs, requires no inter-agent communication, and achieves near-optimal (<5% loss) and fair coordination in a variety of synthetic scenarios and a real-world meeting scheduling problem. The lightweight nature and fast learning constitute ALMA-Learning ideal for on-device deployment.