Current and future optical and near-infrared wide-field surveys have the potential of finding kilonovae, the optical and infrared counterparts to neutron star mergers, independently of gravitational-wave or high-energy gamma-ray burst triggers. The ability to discover fast and faint transients such as kilonovae largely depends on the area observed, the depth of those observations, the number of re-visits per field in a given time frame, and the filters adopted by the survey; it also depends on the ability to perform rapid follow-up observations to confirm the nature of the transients. In this work, we assess kilonova detectability in existing simulations of the LSST strategy for the Vera C. Rubin Wide Fast Deep survey, with focus on comparing rolling to baseline cadences. Although currently available cadences can enable the detection of more than 300 kilonovae out to 1400 Mpc over the ten-year survey, we can expect only 3-32 kilonovae similar to GW170817 to be recognizable as fast-evolving transients. We also explore the detectability of kilonovae over the plausible parameter space, focusing on viewing angle and ejecta masses. We find that observations in redder izy bands are crucial for identification of nearby (within 300 Mpc) kilonovae that could be spectroscopically classified more easily than more distant sources. Rubins potential for serendipitous kilonova discovery could be increased by gain of efficiency with the employment of individual 30s exposures (as opposed to 2x15s snap pairs), with the addition of red-band observations coupled with same-night observations in g- or r-bands, and possibly with further development of a new rolling-cadence strategy.