Recently, the Thakurta metric has been adopted as a model of primordial black holes by several authors. We show that the spacetime described by this metric has neither black-hole event horizon nor black-hole trapping horizon and involves the violation of the null energy condition as a solution of the Einstein equation. Therefore, this metric does not describe a cosmological black hole in the early universe.
Recently, Hutsi et al.[arXiv:2105.09328] critiqued our work that reconsidered the mathematical description of cosmological black holes. In this short comment, we highlight some of the conceptual issues with this criticism in relation to the interpretation of the quasi-local Misner-Sharp mass, and the fact that our description of cosmological black holes does not impose any assumptions about matter accretion.
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with a cosmological constant. Thus, the solutions in this class include all the spherically symmetric solutions in general relativity, such as the Friedmann-Lema^{i}tre-Robertson-Walker solution and the Schwarzschild (-de Sitter) solution, though the one-parameter family of two parameters of the theory admits such a class of solutions. We find that the equations of motion for the perturbations of this class of solutions also reduce to the perturbed Einstein equations at first and second order. Therefore, the stability of the solutions coincides with that of the corresponding solutions in general relativity. In particular, these solutions do not suffer from non-linear instabilities which often appear in the other cosmological solutions in massive gravity and bi-gravity.
We determine the causal structure of the McVittie spacetime for a cosmological model with an asymmetric bounce. The analysis includes the computation of trapping horizons, regular, trapped, and anti-trapped regions, and the integration of the trajectories of radial null geodesics before, during, and after the bounce. We find a trapped region since the beginning of the contracting phase up to shortly before the bounce, thus showing the existence of a black hole. When the universe reaches a certain minimum scale in the contracting phase, the trapping horizons disappear and the central singularity becomes naked. These results suggest that neither a contracting nor an expanding universe can accommodate a black hole at all times.
In this paper we propose that cosmological time is a quantum observable that does not commute with other quantum operators essential for the definition of cosmological states, notably the cosmological constant. This is inspired by properties of a measure of time---the Chern-Simons time---and the fact that in some theories it appears as a conjugate to the cosmological constant, with the two promoted to non-commuting quantum operators. Thus, the Universe may be delocalised in time: it does not {it know} the time, a property which opens up new cosmological scenarios, as well as invalidating several paradoxes, such as the timelike tower of turtles associated with an omnipresent time line. Alternatively, a Universe with a sharply defined clock time must have an indeterminate cosmological constant. The challenge then is to explain how islands of localized time may emerge, and give rise to localized histories. In some scenarios this is achieved by backward transitions in quantum time, cycling the Universe in something akin to a time machine cycle, with classical flow and quantum ebbing. The emergence on matter in a sea of Lambda probably provides the ballast behind classical behaviour.
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper, the axial gravitational perturbations and the QNM frequencies of black holes in the hybrid metric-Palatini gravity (HMPG) are investigated. The HMPG theory is characterized by a dynamical scalar degree of freedom and is able to explain the late-time accelerating expansion of the universe without introducing any textit{ad hoc} screening mechanism to preserve the dynamics at the Solar System scale. We obtain the master equation governing the axial gravitational perturbations of the HMPG black holes and calculate the QNM frequencies. Moreover, in the scrutiny of the black holes and their QNMs, we take into account the constraints on the model parameters based on the post-Newtonian analysis, and show how the QNM frequencies of the HMPG black holes would be altered in the observationally consistent range of parameter space.