In this short review we propose a critical assessment of the role of chaos for the thermalization of Hamiltonian systems with high dimensionality. We discuss this problem for both classical and quantum systems. A comparison is made between the two situations: some examples from recent and past literature are presented which support the point of view that chaos is not necessary for thermalization. Finally, we suggest that a close analogy holds between the role played by Kinchins theorem for high-dimensional classical systems and the role played by Von Neumanns theorem for many-body quantum systems.
We propose a simple procedure by which the interaction parameters of the classical spin Hamiltonian can be determined from the knowledge of four-point correlation functions and specific heat. The proposal is demonstrated by using the correlation and specific heat data generated by Monte Carlo method on one- and two-dimensional Ising-like models, and on the two-dimensional Heisenberg model with Dzyaloshinkii-Moriya interaction. A recipe for applying our scheme to experimental images of magnetization such as those made by magnetic force microscopy is outlined.
Erosion by flowing water is one of the major forces shaping the surface of Earth. Studies in the last decade have shown, in particular, that the drainage region of rivers, where water is collected, exhibits scale invariant features characterized by exponents that are the same for rivers around the world. Here we show that from the data obtained by the MOLA altimeter of the Mars Global Surveyor one can perform the same analysis for mountain sides on Mars. We then show that in some regions fluid erosion might have played a role in the present martian landscape.
We investigate the non-equilibrium dynamics of a class of isolated one-dimensional systems possessing two degenerate ground states, initialized in a low-energy symmetric phase. We report the emergence of a time-scale separation between fast (radiation) and slow (kink or domain wall) degrees of freedom. We find a universal long-time dynamics, largely independent of the microscopic details of the system, in which the kinks control the relaxation of relevant observables and correlations. The resulting late-time dynamics can be described by a set of phenomenological equations, which yield results in excellent agreement with the numerical tests.
We propose a minimal model for the emergence of a directed flow in autonomous Hamiltonian systems. It is shown that internal breaking of the spatio-temporal symmetries, via localised initial conditions, that are unbiased with respect to the transporting degree of freedom, and transient chaos conspire to form the physical mechanism for the occurrence of a current. Most importantly, after passage through the transient chaos, trajectories perform solely regular transporting motion so that the resulting current is of continual ballistic nature. This has to be distinguished from the features of transport reported previously for driven Hamiltonian systems with mixed phase space where transport is determined by intermittent behaviour exhibiting power-law decay statistics of the duration of regular ballistic periods.
Do negative absolute temperatures matter physics and specifically Statistical Physics? We provide evidence that we can certainly answer positively to this vexata quaestio. The great majority of models investigated by statistical mechanics over almost one century and a half exhibit positive absolute temperature, because their entropy is a nondecreasing function of energy. Since more than half a century ago it has been realized that this may not be the case for some physical systems as incompressible fluids, nuclear magnetic chains, lasers, cold atoms and optical waveguides. We review these examples and discuss their peculiar thermodynamic properties, which have been associated to the presence of thermodynamic regimes, characterized by negative absolute temperatures. As reported in this review, the ambiguity inherent the definition of entropy has recurrently raised a harsh debate about the possibility of considering negative temperature states as genuine thermodynamic equilibrium ones. Here we show that negative absolute temperatures are consistent with equilibrium as well as with non-equilibrium thermodynamics. In particular, thermometry, thermodynamics of cyclic transformations, ensemble equivalence, fluctuation-dissipation relations, response theory and even transport processes can be reformulated to include them, thus dissipating any prejudice about their exceptionality, typically presumed as a manifestation of transient metastable effects.