We construct a three-Higgs doublet model with a flavour non-universal ${rm U}(1)times mathbb{Z}_2$ symmetry. That symmetry induces suppressed flavour-changing interactions mediated by neutral scalars. New scalars with masses below the TeV scale can still successfully negotiate the constraints arising from flavour data. Such a model can thus encourage direct searches for extra Higgs bosons in the future collider experiments, and includes a non-trivial flavour structure.
We propose a class of Two Higgs Doublet Models where there are Flavour Changing Neutral Currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in BGL models. The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. It is pointed out that the additional sources of flavour and CP violation are such that they can enhance significantly the generation of the Baryon Asymmetry of the Universe, with respect to the Standard Model.
We demonstrate that flavour-changing neutral currents in the top sector, mediated by leptophilic scalars at the electroweak scale, can easily arise in scenarios of new physics, and in particular in composite Higgs models. We moreover show that such interactions are poorly constrained by current experiments, while they can be searched for at the LHC in rare top decays and, more generally, in the channels $ppto tS(S)+j$, with $Stoell^+ell^-$. We provide dedicated analyses in this respect, obtaining that cut-off scales as large as $Lambdasim$ 90 TeV can be probed with an integrated luminosity of $mathcal{L} = 150$ fb$^{-1}$.
A model with three scalar doublets can be conveniently accommodated within an A4 symmetric framework. The A4 symmetry permits only a restricted form for the scalar potential. We show that for the global minima of this potential alignment follows as a natural consequence. We also verify that in every case positivity and unitarity constraints are satisfactorily met.
We worked out in detail the three-Higgs-doublet extension of the standard model when the $A_4$ symmetry, which is imposed to solve the flavor problem, is extended to the scalar sector. The three doublets may be related to the fermion mass generation and, in particular, they may be the unique responsible for the generation of the neutrino masses. If this is the case, the respective VEVs have to be quite smaller than the electroweak scale if no fine tuning in the Yukawa couplings is assumed. We consider here the mass spectra in the scalar sector in three different situations. In one of them there are no light scalars at all, but in the other ones a light or two massless scalars, at the tree level, may survive. The later fields are safe, from the phenomenological point of view, since it couples mainly with neutrinos and/or becomes enough massive at the tree level if there exist trilinear interactions. Quantum effects may be important too.
We consider an extension of the standard model (SM) with three $SU(2)$ scalar doublets and a discrete $S_3otimes mathbb{Z}_2$ symmetries. The irreducible representation of $S_3$ has a singlet and a doublet, and here we show that the singlet corresponds to the SM-like Higgs and the two additional $SU(2)$ doublets forming a $S_3$ doublet are inert. In general, in a three scalar doublet model, with or without $S_3$ symmetry, the diagonalization of the mass matrices implies arbitrary unitary matrices. However, we show that in our model these matrices are of the tri-bimaximal type. We also analyzed the scalar mass spectra and the conditions for the scalar potential is bounded from below at the tree level. We also discuss some phenomenological consequences of the model.
Dipankar Das
,P.M. Ferreira
,Antonio P. Morais
.
(2021)
.
"A three Higgs doublet model with symmetry-suppressed flavour changing neutral currents"
.
Antonio Morais
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا