Do you want to publish a course? Click here

Beyond the detector horizon: Forecasting gravitational-wave strong lensing

112   0   0.0 ( 0 )
 Added by Renske Wierda
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

When gravitational waves pass near massive astrophysical objects, they can be gravitationally lensed. The lensing can split them into multiple wave-fronts, magnify them, or imprint beating patterns on the waves. Here we focus on the multiple images produced by strong lensing. In particular, we investigate strong lensing forecasts, the rate of lensing, and the role of lensing statistics in strong lensing searches. Overall, we find a reasonable rate of lensed detections for double, triple, and quadruple images at the LIGO--Virgo--KAGRA design sensitivity. We also report the rates for A+ and LIGO Voyager and briefly comment on potential improvements due to the inclusion of sub-threshold triggers. We find that most galaxy-lensed events originate from redshifts $z sim 1-4$ and report the expected distribution of lensing parameters for the observed events. Besides forecasts, we investigate the role of lensing forecasts in strong lensing searches, which explore repeated event pairs. One problem associated with the searches is the rising number of event pairs, which leads to a rapidly increasing false alarm probability. We show how knowledge of the expected galaxy lensing time delays in our searches allow us to tackle this problem. Once the time delays are included, the false alarm probability increases linearly (similar to non-lensed searches) instead of quadratically with time, significantly improving the search. For galaxy cluster lenses, the improvement is less significant. The main uncertainty associated with these forecasts are the merger-rate density estimates at high redshift, which may be better resolved in the future.



rate research

Read More

Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distribution in galaxy clusters, measurements of the polarization of GWs, tests of General Relativity, and constraints on the Hubble parameter. Excited by these prospects, and intrigued by the presence of so-called heavy black holes in the early detections by LIGO-Virgo, we commenced a search for strongly-lensed GWs and possible electromagnetic counterparts in the latter stages of the second LIGO observing run (O2). Here, we summarise our calculation of the detection rate of strongly-lensed GWs, describe our review of BBH detections from O1, outline our observing strategy in O2, summarize our follow-up observations of GW170814, and discuss the future prospects of detection.
At supranuclear densities, explored in the core of neutron stars, a strong phase transition from hadronic matter to more exotic forms of matter might be present. To test this hypothesis, binary neutron-star mergers offer a unique possibility to probe matter at densities that we can not create in any existing terrestrial experiment. In this work, we show that, if present, strong phase transitions can have a measurable imprint on the binary neutron-star coalescence and the emitted gravitational-wave signal. We construct a new parameterization of the supranuclear equation of state that allows us to test for the existence of a strong phase transition and extract its characteristic properties purely from the gravitational-wave signal of the inspiraling neutron stars. We test our approach using a Bayesian inference study simulating 600 signals with three different equations of state and find that for current gravitational-wave detector networks already twelve events might be sufficient to verify the presence of a strong phase transition. Finally, we use our methodology to analyze GW170817 and GW190425, but do not find any indication that a strong phase transition is present at densities probed during the inspiral.
We discuss the phenomenology of gravitational lensing in the purely metric $fleft(chiright)$ gravity, an $f(R)$ gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy lens systems and in clusters of galaxies. Using an approximate metric solution accurate to second order of the velocity field $v/c$, we show how, in the $fleft(chiright)=chi^{3/2}$ gravity, the same light deflection can be produced by point-like lenses with masses smaller than in General Relativity; this mass difference increases with increasing impact parameter and decreasing lens mass. However, for sufficiently massive point-like lenses and small impact parameters, $fleft(chiright)=chi^{3/2}$ and GR yield indistinguishable light deflection angles: this regime occurs both in observed galaxy-galaxy lens systems and in the central regions of galaxy clusters. In the former systems, the GR and $fleft(chiright)$ masses are compatible with the mass of standard stellar populations and little or no dark matter, whereas, on the scales of the core of galaxy clusters, the presence of substantial dark matter is required both in General Relativity, and in our approximate $fleft(chiright)=chi^{3/2}$ point-like lens solution. We thus conclude that our approximate metric solution of $fleft(chiright)=chi^{3/2}$ is unable to describe the observed phenomenology of the strong lensing regime without the aid of dark matter.
Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled galaxy-scale strong gravitational lensing (SGL) sample to constrain the parameter $gamma_{PPN}$ in the parametrized post-Newtonian (PPN) formalism. We employ the Pantheon sample of type Ia supernovae observation to calibrate the distances in the SGL systems using the Gaussian Process method, which avoids the logical problem caused by assuming a cosmological model within GR to determine the distances in the SGL sample. Furthermore, we consider three typical lens models in this work to investigate the influences of the lens mass distributions on the fitting results. We find that the choice of the lens models has a significant impact on the constraints on the PPN parameter $gamma_{PPN}$. We use the Bayesian information criterion as an evaluation tool to make a comparison for the fitting results of the three lens models, and we find that the most reliable lens model gives the result of $gamma_{PPN}=1.065^{+0.064}_{-0.074}$, which is in good agreement with the prediction of $gamma_{PPN}=1$ by GR. As far as we know, our 6.4% constraint result is the best result so far among the recent works using the SGL method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا