Rotation Based Slice Error Correction Protocol for Continuous-variable Quantum Key Distribution and its Implementation with Polar Codes


Abstract in English

Reconciliation is an essential procedure for continuous-variable quantum key distribution (CV-QKD). As the most commonly used reconciliation protocol in short-distance CV-QKD, the slice error correction (SEC) allows a system to distill more than 1 bit from each pulse. However, its quantization efficiency is greatly affected by the noisy channel with a low signal-to-noise ratio (SNR), which usually limits the secure distance to about 30 km. In this paper, an improved SEC protocol, named Rotation-based SEC (RSEC), is proposed through performing a random orthogonal rotation on the raw data before quantization, and deducing a new estimator for quantized sequences. Moreover, the RSEC protocol is implemented with polar codes. Experimental results show that the proposed protocol can reach up to a quantization efficiency of about 99%, and maintains at around 96% even at the relatively low SNRs $(0.5,1)$, which theoretically extends the secure distance to about 45 km. When implemented with the polar codes with block length of 16 Mb, the RSEC can achieve a reconciliation efficiency of above 95%, which outperforms all previous SEC schemes. In terms of finite-size effects, we achieve a secret key rate of $7.83times10^{-3}$ bits/pulse at a distance of 33.93 km (the corresponding SNR value is 1). These results indicate that the proposed protocol significantly improves the performance of SEC and is a competitive reconciliation scheme for the CV-QKD system.

Download