Do you want to publish a course? Click here

Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation

101   0   0.0 ( 0 )
 Added by Xin Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.

rate research

Read More

Natural language generation (NLG) systems are commonly evaluated using n-gram overlap measures (e.g. BLEU, ROUGE). These measures do not directly capture semantics or speaker intentions, and so they often turn out to be misaligned with our true goals for NLG. In this work, we argue instead for communication-based evaluations: assuming the purpose of an NLG system is to convey information to a reader/listener, we can directly evaluate its effectiveness at this task using the Rational Speech Acts model of pragmatic language use. We illustrate with a color reference dataset that contains descriptions in pre-defined quality categories, showing that our method better aligns with these quality categories than do any of the prominent n-gram overlap methods.
144 - Haoyu Zhang , Jianjun Xu , Ji Wang 2019
In this paper, we propose a novel pretraining-based encoder-decoder framework, which can generate the output sequence based on the input sequence in a two-stage manner. For the encoder of our model, we encode the input sequence into context representations using BERT. For the decoder, there are two stages in our model, in the first stage, we use a Transformer-based decoder to generate a draft output sequence. In the second stage, we mask each word of the draft sequence and feed it to BERT, then by combining the input sequence and the draft representation generated by BERT, we use a Transformer-based decoder to predict the refined word for each masked position. To the best of our knowledge, our approach is the first method which applies the BERT into text generation tasks. As the first step in this direction, we evaluate our proposed method on the text summarization task. Experimental results show that our model achieves new state-of-the-art on both CNN/Daily Mail and New York Times datasets.
An interpretable system for open-domain reasoning needs to express its reasoning process in a transparent form. Natural language is an attractive representation for this purpose -- it is both highly expressive and easy for humans to understand. However, manipulating natural language statements in logically consistent ways is hard: models must cope with variation in how meaning is expressed while remaining precise. In this paper, we describe ParaPattern, a method for building models to generate deductive inferences from diverse natural language inputs without direct human supervision. We train BART-based models (Lewis et al., 2020) to generate the result of applying a particular logical operation to one or more premise statements. Crucially, we develop a largely automated pipeline for constructing suitable training examples from Wikipedia. We evaluate our models using out-of-domain sentence compositions from the QASC (Khot et al., 2020) and EntailmentBank (Dalvi et al., 2021) datasets as well as targeted perturbation sets. Our results show that our models are substantially more accurate and flexible than baseline systems. ParaPattern achieves 85% validity on examples of the substitution operation from EntailmentBank without the use of any in-domain training data, matching the performance of a model fine-tuned for EntailmentBank. The full source code for our method is publicly available.
111 - Li Dong , Nan Yang , Wenhui Wang 2019
This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UniLM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UniLM achieves new state-of-the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm.
72 - Gyuwan Kim 2019
Current neural query auto-completion (QAC) systems rely on character-level language models, but they slow down when queries are long. We present how to utilize subword language models for the fast and accurate generation of query completion candidates. Representing queries with subwords shorten a decoding length significantly. To deal with issues coming from introducing subword language model, we develop a retrace algorithm and a reranking method by approximate marginalization. As a result, our model achieves up to 2.5 times faster while maintaining a similar quality of generated results compared to the character-level baseline. Also, we propose a new evaluation metric, mean recoverable length (MRL), measuring how many upcoming characters the model could complete correctly. It provides more explicit meaning and eliminates the need for prefix length sampling for existing rank-based metrics. Moreover, we performed a comprehensive analysis with ablation study to figure out the importance of each component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا