No Arabic abstract
The idea of using lexical translations to define sense inventories has a long history in lexical semantics. We propose a theoretical framework which allows us to answer the question of why this apparently reasonable idea failed to produce useful results. We formally prove several propositions on how the translations of a word relate to its senses, as well as on the relationship between synonymy and polysemy. We empirically validate our theoretical findings on BabelNet, and demonstrate how they could be used to perform unsupervised word sense disambiguation of a substantial fraction of the lexicon.
Word sense disambiguation (WSD) methods identify the most suitable meaning of a word with respect to the usage of that word in a specific context. Neural network-based WSD approaches rely on a sense-annotated corpus since they do not utilize lexical resources. In this study, we utilize both context and related gloss information of a target word to model the semantic relationship between the word and the set of glosses. We propose SensPick, a type of stacked bidirectional Long Short Term Memory (LSTM) network to perform the WSD task. The experimental evaluation demonstrates that SensPick outperforms traditional and state-of-the-art models on most of the benchmark datasets with a relative improvement of 3.5% in F-1 score. While the improvement is not significant, incorporating semantic relationships brings SensPick in the leading position compared to others.
We present ESPnet-ST, which is designed for the quick development of speech-to-speech translation systems in a single framework. ESPnet-ST is a new project inside end-to-end speech processing toolkit, ESPnet, which integrates or newly implements automatic speech recognition, machine translation, and text-to-speech functions for speech translation. We provide all-in-one recipes including data pre-processing, feature extraction, training, and decoding pipelines for a wide range of benchmark datasets. Our reproducible results can match or even outperform the current state-of-the-art performances; these pre-trained models are downloadable. The toolkit is publicly available at https://github.com/espnet/espnet.
Personalized chatbots focus on endowing chatbots with a consistent personality to behave like real users, give more informative responses, and further act as personal assistants. Existing personalized approaches tried to incorporate several text descriptions as explicit user profiles. However, the acquisition of such explicit profiles is expensive and time-consuming, thus being impractical for large-scale real-world applications. Moreover, the restricted predefined profile neglects the language behavior of a real user and cannot be automatically updated together with the change of user interests. In this paper, we propose to learn implicit user profiles automatically from large-scale user dialogue history for building personalized chatbots. Specifically, leveraging the benefits of Transformer on language understanding, we train a personalized language model to construct a general user profile from the users historical responses. To highlight the relevant historical responses to the input post, we further establish a key-value memory network of historical post-response pairs, and build a dynamic post-aware user profile. The dynamic profile mainly describes what and how the user has responded to similar posts in history. To explicitly utilize users frequently used words, we design a personalized decoder to fuse two decoding strategies, including generating a word from the generic vocabulary and copying one word from the users personalized vocabulary. Experiments on two real-world datasets show the significant improvement of our model compared with existing methods. Our code is available at https://github.com/zhengyima/DHAP
In this paper, we are going to focus on speed up of the Word Sense Disambiguation procedure by filtering the relevant senses of an ambiguous word through Part-of-Speech Tagging. First, this proposed approach performs the Part-of-Speech Tagging operation before the disambiguation procedure using Bigram approximation. As a result, the exact Part-of-Speech of the ambiguous word at a particular text instance is derived. In the next stage, only those dictionary definitions (glosses) are retrieved from an online dictionary, which are associated with that particular Part-of-Speech to disambiguate the exact sense of the ambiguous word. In the training phase, we have used Brown Corpus for Part-of-Speech Tagging and WordNet as an online dictionary. The proposed approach reduces the execution time upto half (approximately) of the normal execution time for a text, containing around 200 sentences. Not only that, we have found several instances, where the correct sense of an ambiguous word is found for using the Part-of-Speech Tagging before the Disambiguation procedure.
Word senses are not static and may have temporal, spatial or corpus-specific scopes. Identifying such scopes might benefit the existing WSD systems largely. In this paper, while studying corpus specific word senses, we adapt three existing predominant and novel-sense discovery algorithms to identify these corpus-specific senses. We make use of text data available in the form of millions of digitized books and newspaper archives as two different sources of corpora and propose automated methods to identify corpus-specific word senses at various time points. We conduct an extensive and thorough human judgment experiment to rigorously evaluate and compare the performance of these approaches. Post adaptation, the output of the three algorithms are in the same format and the accuracy results are also comparable, with roughly 45-60% of the reported corpus-specific senses being judged as genuine.