No Arabic abstract
We consider two-loop QCD corrections to the element $Gamma_{12}^q$ of the decay matrix in $B_q-bar{B}_q$ mixing, $q=d,s$, in the leading power of the Heavy Quark Expansion. The calculated contributions involve one current-current and one penguin operator and constitute the next step towards a theory prediction for the width difference $DeltaGamma_s$ matching the precise experimental data. We present compact analytic results for all matching coefficients in an expansion in $m_c/m_b$ up to second order. Our new corrections are comparable in size to the current experimental error and slightly increase $DeltaGamma_s$.
Predicting the $B_s^0-bar{B}_s^0$ width difference $DeltaGamma_s$ relies on the heavy quark expansion and on hadronic matrix elements of $Delta B=2$ operators. We present the first lattice QCD results for matrix elements of the dimension-7 operators $R_{2,3}$ and linear combinations $tilde{R}_{2,3}$ using nonrelativistic QCD for the bottom quark and a highly improved staggered quark (HISQ) action for the strange quark. Computations use MILC ensembles of gauge field configuations with $2+1+1$ flavors of sea quarks with the HISQ discretization, including lattices with physically light up/down quark masses. We discuss features unique to calculating matrix elements of these operators and analyze uncertainties from series truncation, discretization, and quark mass dependence. Finally we report the first Standard Model determination of $DeltaGamma_s$ using lattice QCD results for all hadronic matrix elements through $mathcal{O}(1/m_b)$. The main result of our calculations yields the $1/m_b$ contribution $Delta Gamma_{1/m_b} = -0.022(10)~mathrm{ps}^{-1}$. Adding this to the leading order contribution, the Standard Model prediction is $Delta Gamma_s = 0.092(14)~mathrm{ps}^{-1}$.
The width difference $Delta Gamma$ among the two mass eigenstates of the $B_s$-$bar B_s$ system is measured with a precision of 7%. The theory prediction has a larger uncertainty which mainly stems from unknown perturbative higher-order QCD corrections. I discuss the subset of next-to-next-to-leading order diagrams proportional to $alpha_s^2, N_f$, where $N_f=5$ is the number of quark flavours. The results are published in [1].
We study the decay modes $bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0$ within the frameworks of two-Higgs doublet models type-II and typ-III. We adopt in our study Soft Collinear Effective Theory as a framework for the calculation of the amplitudes. We derive the contributions of the charged Higgs mediation to the weak effective Hamiltonian governing the decay processes in both models. Moreover we analyze the effect of the charged Higgs mediation on the Wilson coefficients of the electrowek penguins and on the branching ratios of $bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0$ decays. We show that wthin two-Higgs doublet models type-II and type-III the Wilson coefficients corresponding to the electroweak penguins can be enhanced due to the contributions from the charged Higgs mediation leading into enhancement in the branching ratios of $ bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0 $ decays. We find that, within two-Higgs doublet models type-II, the enhancement in the branching ratio of $bar{B}_sto phi pi^0$ can not exceed $18%$ with respect to the SM predictions. For the branching ratio of $bar{B}_sto phi rho^0$, we find that the charged Higgs contribution in this case is small where the branching ratio of $bar{B}_sto phi rho^0$ can be enhanced or reduced by about $4% $ with respect to the SM predictions. For the case of the two-Higgs doublet models type-III we show that the branching ratio of $bar{B}_sto phi pi^0$ can be enhanced by about a factor $2$ of its value within two-Higgs doublet models type-II. However no sizable enhancement with respect to the SM predictions can be obtained for both $bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0$ decays.
Besides being important to determine Standard Model parameters such as the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$, semileptonic $B$ decays seem also promising to reveal new physics (NP) phenomena, in particular in connection with the possibility of uncovering lepton flavour universality (LFU) violating effects. In this view, it could be natural to connect the tensions in the inclusive versus exclusive determinations of $|V_{cb}|$ to the anomalies in the ratios $R(D^{(*)})$ of decay rates into $tau$ vs $mu, e$. However, the question has been raised about the role of the parametrization of the hadronic $B to D^{(*)}$ form factors in exclusive $B$ decay modes. We focus on the fully differential angular distributions of $bar B to D^* ell^-{bar u}_ell$ with $D^* to D pi$ or $D^* to D gamma$, the latter mode being important in the case of $B_s to D_s^*$ decays. We show that the angular coefficients in the distributions can be used to scrutinize the role of the form factor parametrization and to pin down deviations from SM. As an example of a NP scenario, we include a tensor operator in the $b to c$ semileptonic effective Hamiltonian, and discuss how the angular coefficients allow to construct observables sensitive to this structure, also defining ratios useful to test LFU.
The recent observation of the mass difference in $B_s$ system seems to be not in complete agreement with the corresponding standard model value. We consider the model with an extra vector like down quark to explain this discrepancy and obtain the constraints on the new physics parameters. Thereafter, we show that with these new constraints this model can successfully explain other observed deviations associated with $b to s$ transitions, namely, $B_s to psi phi$, $Bto K pi$ and $Bto phi K_s$.