Classical algorithms and quantum limitations for maximum cut on high-girth graphs


Abstract in English

We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of classical algorithms. (1) We prove that every (quantum or classical) one-local algorithm achieves on $D$-regular graphs of girth $> 5$ a maximum cut of at most $1/2 + C/sqrt{D}$ for $C=1/sqrt{2} approx 0.7071$. This is the first such result showing that one-local algorithms achieve a value bounded away from the true optimum for random graphs, which is $1/2 + P_*/sqrt{D} + o(1/sqrt{D})$ for $P_* approx 0.7632$. (2) We show that there is a classical $k$-local algorithm that achieves a value of $1/2 + C/sqrt{D} - O(1/sqrt{k})$ for $D$-regular graphs of girth $> 2k+1$, where $C = 2/pi approx 0.6366$. This is an algorithmic version of the existential bound of Lyons and is related to the algorithm of Aizenman, Lebowitz, and Ruelle (ALR) for the Sherrington-Kirkpatrick model. This bound is better than that achieved by the one-local and two-loc

Download