Steering visible Dyakonov surface waves at the hyperbolic metasurface


Abstract in English

Dyakonov surface wave existing at the interface with anisotropy offers a promising way of guiding light in two-dimension with almost no loss. However, predicted decades ago, the experimental demonstration of the Dyakonov surface wave seems always challenging for the weak anisotropic indices from the natural materials. Here we experimentally demonstrated a Dyakonov surface wave mode propagating in a hyperbolic metasurface at the visible frequency. Dyakonov surface waves at the two surfaces of the metasurface can be supported simultaneously by the hyperbolic anisotropy and form a Dyakonov typed mode with low loss and a large allowed angle band. A detailed theoretical analysis and numerical simulations prove that the electric field of such a surface wave mode shows transverse spin, whose direction is determined by the orientations of the hyperbolic anisotropy and surface normal, based on which we experimentally observed the photonic spin Hall effect of the surface wave mode in our metasurface.

Download