Do you want to publish a course? Click here

VT-SSum: A Benchmark Dataset for Video Transcript Segmentation and Summarization

125   0   0.0 ( 0 )
 Added by Lei Cui
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video transcript summarization is a fundamental task for video understanding. Conventional approaches for transcript summarization are usually built upon the summarization data for written language such as news articles, while the domain discrepancy may degrade the model performance on spoken text. In this paper, we present VT-SSum, a benchmark dataset with spoken language for video transcript segmentation and summarization, which includes 125K transcript-summary pairs from 9,616 videos. VT-SSum takes advantage of the videos from VideoLectures.NET by leveraging the slides content as the weak supervision to generate the extractive summary for video transcripts. Experiments with a state-of-the-art deep learning approach show that the model trained with VT-SSum brings a significant improvement on the AMI spoken text summarization benchmark. VT-SSum is publicly available at https://github.com/Dod-o/VT-SSum to support the future research of video transcript segmentation and summarization tasks.



rate research

Read More

We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct crosslingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.
With the explosive growth of livestream broadcasting, there is an urgent need for new summarization technology that enables us to create a preview of streamed content and tap into this wealth of knowledge. However, the problem is nontrivial due to the informal nature of spoken language. Further, there has been a shortage of annotated datasets that are necessary for transcript summarization. In this paper, we present StreamHover, a framework for annotating and summarizing livestream transcripts. With a total of over 500 hours of videos annotated with both extractive and abstractive summaries, our benchmark dataset is significantly larger than currently existing annotated corpora. We explore a neural extractive summarization model that leverages vector-quantized variational autoencoder to learn latent vector representations of spoken utterances and identify salient utterances from the transcripts to form summaries. We show that our model generalizes better and improves performance over strong baselines. The results of this study provide an avenue for future research to improve summarization solutions for efficient browsing of livestreams.
127 - Minghao Li , Yiheng Xu , Lei Cui 2020
Document layout analysis usually relies on computer vision models to understand documents while ignoring textual information that is vital to capture. Meanwhile, high quality labeled datasets with both visual and textual information are still insufficient. In this paper, we present textbf{DocBank}, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis. DocBank is constructed using a simple yet effective way with weak supervision from the LaTeX{} documents available on the arXiv.com. With DocBank, models from different modalities can be compared fairly and multi-modal approaches will be further investigated and boost the performance of document layout analysis. We build several strong baselines and manually split train/dev/test sets for evaluation. Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents. The DocBank dataset is publicly available at url{https://github.com/doc-analysis/DocBank}.
In this paper, we introduce MedLane -- a new human-annotated Medical Language translation dataset, to align professional medical sentences with layperson-understandable expressions. The dataset contains 12,801 training samples, 1,015 validation samples, and 1,016 testing samples. We then evaluate one naive and six deep learning-based approaches on the MedLane dataset, including directly copying, a statistical machine translation approach Moses, four neural machine translation approaches (i.e., the proposed PMBERT-MT model, Seq2Seq and its two variants), and a modified text summarization model PointerNet. To compare the results, we utilize eleven metrics, including three new measures specifically designed for this task. Finally, we discuss the limitations of MedLane and baselines, and point out possible research directions for this task.
While online conversations can cover a vast amount of information in many different formats, abstractive text summarization has primarily focused on modeling solely news articles. This research gap is due, in part, to the lack of standardized datasets for summarizing online discussions. To address this gap, we design annotation protocols motivated by an issues--viewpoints--assertions framework to crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads. We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data. To create a comprehensive benchmark, we also evaluate these models on widely-used conversation summarization datasets to establish strong baselines in this domain. Furthermore, we incorporate argument mining through graph construction to directly model the issues, viewpoints, and assertions present in a conversation and filter noisy input, showing comparable or improved results according to automatic and human evaluations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا