Short textual descriptions of entities provide summaries of their key attributes and have been shown to be useful sources of background knowledge for tasks such as entity linking and question answering. However, generating entity descriptions, especially for new and long-tail entities, can be challenging since relevant information is often scattered across multiple sources with varied content and style. We introduce DESCGEN: given mentions spread over multiple documents, the goal is to generate an entity summary description. DESCGEN consists of 37K entity descriptions from Wikipedia and Fandom, each paired with nine evidence documents on average. The documents were collected using a combination of entity linking and hyperlinks to the Wikipedia and Fandom entity pages, which together provide high-quality distant supervision. The resulting summaries are more abstractive than those found in existing datasets and provide a better proxy for the challenge of describing new and emerging entities. We also propose a two-stage extract-then-generate baseline and show that there exists a large gap (19.9% in ROUGE-L) between state-of-the-art models and human performance, suggesting that the data will support significant future work.