No Arabic abstract
Light-front wave functions play a fundamental role in the light-front quantization approach to QCD and hadron structure. However, a naive implementation of the light-front quantization suffers from various subtleties including the well-known zero-mode problem, the associated rapidity divergences which mixes ultra-violet divergences with infrared physics, as well as breaking of spatial rotational symmetry. We advocate that the light-front quantization should be viewed as an effective theory in which small $k^+$ modes have been effectively ``integrated out, with an infinite number of renormalization constants. Instead of solving light-front quantized field theories directly, we make the large momentum expansion of the equal-time Euclidean correlation functions in instant quantization as an effective way to systematically calculate light-front correlations, including the light-front wave function amplitudes. This large-momentum effective theory accomplishes an effective light-front quantization through lattice QCD calculations. We demonstrate our approach using an example of a pseudo-scalar meson wave function.
We obtain the light-front wavefunctions for the nucleon in the valence quark Fock space from an effective Hamiltonian, which includes the transverse and longitudinal confinement and the one-gluon exchange interaction with fixed coupling. The wavefunctions are generated by solving the eigenvalue equation in a basis light-front quantization. Fitting the model parameters, the wavefunctions lead to good simultaneous description of electromagnetic form factors, radii, and parton distribution functions for the proton.
We produce the light-front wave functions (LFWFs) of the nucleon from a basis light-front ap- proach in the leading Fock sector representation. We solve for the mass eigenstates from a light-front effective Hamiltonian, which includes a confining potential adopted from light-front holography in the transverse direction, a longitudinal confinement, and a one-gluon exchange interaction with fixed coupling. We then employ the LFWFs to obtain the electromagnetic and axial form factors, the par- ton distribution functions (PDFs) and the generalized parton distribution functions for the nucleon. The electromagnetic and axial form factors of the proton agree with the experimental data, whereas the neutron form factors deviate somewhat from the experiments in the low momentum transfer region. The unpolarized, the helicity, and the transversity valence quark PDFs, after QCD scale evolution, are fairly consistent with the global fits to the data at the relevant experimental scales. The helicity asymmetry for the down quark also agrees well with the measurements, however, the asymmetry for the up quark shows a deviation from the data, especially in the small x region. We also find that the tensor charge agrees well with the extracted data and the lattice QCD predictions, while the axial charge is somewhat outside the experimental error bar. The electromagnetic radii of the proton, the magnetic radius of the neutron, and the axial radius are in excellent agreement with the measurements, while the neutron charge radius deviates from experiment.
It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these scales as the only free parameters, the valence quark distribution functions of the pion, after QCD evolving, are consistent with the E615 experiment at Fermilab. In addition, the ratio of the up quark distribution in the kaon to that in the pion also agrees with the NA3 experimental result at CERN.
We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 0.6%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.