Understanding the basic operational logics of the nervous system is essential to advancing neuroscientific research. However, theoretical efforts to tackle this fundamental problem are lacking, despite the abundant empirical data about the brain that has been collected in the past few decades. To address this shortcoming, this document introduces a hypothetical framework for the functional nature of primitive neural networks. It analyzes the idea that the activity of neurons and synapses can symbolically reenact the dynamic changes in the world and thus enable an adaptive system of behavior. More significantly, the network achieves this without participating in an algorithmic structure. When a neurons activation represents some symbolic element in the environment, each of its synapses can indicate a potential change to the element and its future state. The efficacy of a synaptic connection further specifies the elements particular probability for, or contribution to, such a change. As it fires, a neurons activation is transformed to its postsynaptic targets, resulting in a chronological shift of the represented elements. As the inherent function of summation in a neuron integrates the various presynaptic contributions, the neural network mimics the collective causal relationship of events in the observed environment.