Long-Range Order Enhances Charge Transfer in Donor/Acceptor Co-Crystals


Abstract in English

Electronic and optical properties of doped organic semiconductors are dominated by local interactions between donor and acceptor molecules. However, when such systems are in crystalline form, long-range order competes against short-range couplings. In a first-principles study on three experimentally resolved bulk structures of quaterthiophene doped by (fluorinated) tetracyanoquinodimethane, we demonstrate the crucial role of long-range interactions in donor/acceptor co-crystals. The band structures of the investigated materials exhibit direct band-gaps decreasing in size with increasing amount of F atoms in the acceptors. The valence-band maximum and conduction-band minimum are found at the Brillouin zone boundary and the corresponding wave-functions are segregated on donor and acceptor molecules, respectively. With the aid of a tight-binding model, we rationalize that the mechanisms responsible for these behaviors, which are ubiquitous in donor/acceptor co-crystals, are driven by long-range interactions. The optical response of the analyzed co-crystals is highly anisotropic. The absorption onset is dominated by an intense resonance corresponding to a charge-transfer excitation. Long-range interactions are again responsible for this behavior, which enhances the efficiency of the co-crystals for photo-induced charge separation and transport. In addition to this result, which has important implications in the rational design of organic materials for opto-electronics, our study clarifies that cluster models, accounting only for local interactions, cannot capture the relevant impact of long-range order in donor/acceptor co-crystals.

Download