Do you want to publish a course? Click here

Salient Object Ranking with Position-Preserved Attention

82   0   0.0 ( 0 )
 Added by Hao Fang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Instance segmentation can detect where the objects are in an image, but hard to understand the relationship between them. We pay attention to a typical relationship, relative saliency. A closely related task, salient object detection, predicts a binary map highlighting a visually salient region while hard to distinguish multiple objects. Directly combining two tasks by post-processing also leads to poor performance. There is a lack of research on relative saliency at present, limiting the practical applications such as content-aware image cropping, video summary, and image labeling. In this paper, we study the Salient Object Ranking (SOR) task, which manages to assign a ranking order of each detected object according to its visual saliency. We propose the first end-to-end framework of the SOR task and solve it in a multi-task learning fashion. The framework handles instance segmentation and salient object ranking simultaneously. In this framework, the SOR branch is independent and flexible to cooperate with different detection methods, so that easy to use as a plugin. We also introduce a Position-Preserved Attention (PPA) module tailored for the SOR branch. It consists of the position embedding stage and feature interaction stage. Considering the importance of position in saliency comparison, we preserve absolute coordinates of objects in ROI pooling operation and then fuse positional information with semantic features in the first stage. In the feature interaction stage, we apply the attention mechanism to obtain proposals contextualized representations to predict their relative ranking orders. Extensive experiments have been conducted on the ASR dataset. Without bells and whistles, our proposed method outperforms the former state-of-the-art method significantly. The code will be released publicly available.



rate research

Read More

125 - Shuhan Chen , Xiuli Tan , Ben Wang 2018
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Salient object detection (SOD) is viewed as a pixel-wise saliency modeling task by traditional deep learning-based methods. A limitation of current SOD models is insufficient utilization of inter-pixel information, which usually results in imperfect segmentation near edge regions and low spatial coherence. As we demonstrate, using a saliency mask as the only label is suboptimal. To address this limitation, we propose a connectivity-based approach called bilateral connectivity network (BiconNet), which uses connectivity masks together with saliency masks as labels for effective modeling of inter-pixel relationships and object saliency. Moreover, we propose a bilateral voting module to enhance the output connectivity map, and a novel edge feature enhancement method that efficiently utilizes edge-specific features. Through comprehensive experiments on five benchmark datasets, we demonstrate that our proposed method can be plugged into any existing state-of-the-art saliency-based SOD framework to improve its performance with negligible parameter increase.
Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative object saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).
Visual attention brings significant progress for Convolution Neural Networks (CNNs) in various applications. In this paper, object-based attention in human visual cortex inspires us to introduce a mechanism for modification of activations in feature maps of CNNs. In this mechanism, the activations of object locations are excited in feature maps. This mechanism is specifically inspired by attention-based gain modulation in object-based attention in brain. It facilitates figure-ground segregation in the visual cortex. Similar to brain, we use the idea to address two challenges in salient object detection: gathering object interior parts while segregation from background with concise boundaries. We implement the object-based attention in the U-net model using different architectures in the encoder parts, including AlexNet, VGG, and ResNet. The proposed method was examined on three benchmark datasets: HKU-IS, MSRB, and PASCAL-S. Experimental results showed that our inspired method could significantly improve the results in terms of mean absolute error and F-measure. The results also showed that our proposed method better captured not only the boundary but also the object interior. Thus, it can tackle the mentioned challenges.
204 - Yi Zhang , Geng Chen , Qian Chen 2021
We propose a novel Synergistic Attention Network (SA-Net) to address the light field salient object detection by establishing a synergistic effect between multi-modal features with advanced attention mechanisms. Our SA-Net exploits the rich information of focal stacks via 3D convolutional neural networks, decodes the high-level features of multi-modal light field data with two cascaded synergistic attention modules, and predicts the saliency map using an effective feature fusion module in a progressive manner. Extensive experiments on three widely-used benchmark datasets show that our SA-Net outperforms 28 state-of-the-art models, sufficiently demonstrating its effectiveness and superiority. Our code will be made publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا