Do you want to publish a course? Click here

A Compact Model for Scalable MTJ Simulation

71   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents a physics-based modeling framework for the analysis and transient simulation of circuits containing Spin-Transfer Torque (STT) Magnetic Tunnel Junction (MTJ) devices. The framework provides the tools to analyze the stochastic behavior of MTJs and to generate Verilog-A compact models for their simulation in large VLSI designs, addressing the need for an industry-ready model accounting for real-world reliability and scalability requirements. Device dynamics are described by the Landau-Lifshitz-Gilbert-Slonczewsky (s-LLGS ) stochastic magnetization considering Voltage-Controlled Magnetic Anisotropy (VCMA) and the non-negligible statistical effects caused by thermal noise. Model behavior is validated against the OOMMF magnetic simulator and its performance is characterized on a 1-Mb 28 nm Magnetoresistive-RAM (MRAM) memory product.



rate research

Read More

Magnetic Tunnel Junctions (MTJs) constitute the novel memory element in STT-MRAM, which is ramping to production at major foundries as an eFlash replacement. MTJ switching exhibits a stochastic behavior due to thermal fluctuations, which is modeled by s-LLGS and Fokker-Planck (FP) equations. This work implements and benchmarks Finite Volume Method (FVM) and analytical solvers for the FP equation. To deploy an MTJ model for circuit design, it must be calibrated against silicon data. To address this challenge, this work presents a regression scheme to fit MTJ parameters to a given set of measured current, switching time and error rate data points, yielding a silicon-calibrated model suitable for MRAM macro transient simulation.
We report the performance characteristics of a notional Convolutional Neural Network based on the previously-proposed Multiply-Accumulate-Activate-Pool set, an MTJ-based spintronic circuit made to compute multiple neural functionalities in parallel. A study of image classification with the MNIST handwritten digits dataset using this network is provided via simulation. The effect of changing the weight representation precision, the severity of device process variation within the MAAP sets and the computational redundancy are provided. The emulated network achieves between 90 and 95% image classification accuracy at a cost of ~100 nJ per image.
We propose a dedicated winner-take-all circuit to efficiently implement the intra-column competition between cells in Hierarchical Temporal Memory which is a crucial part of the algorithm. All inputs and outputs are charge-based for compatibility with standard CMOS. The circuit incorporates memristors for competitive advantage to emulate a column with a cell in a predictive state. The circuit can also detect columns bursting by passive averaging and comparison of the cell outputs. The proposed spintronic devices and circuit are thoroughly described and a series of simulations are used to predict the performance. The simulations indicate that the circuit can complete a nine-cell, nine-input competition operation in under 15 ns at a cost of about 25 pJ.
We propose a new network architecture for standard spin-Hall magnetic tunnel junction-based spintronic neurons that allows them to compute multiple critical convolutional neural network functionalities simultaneously and in parallel, saving space and time. An approximation to the Rectified Linear Unit transfer function and the local pooling function are computed simultaneously with the convolution operation itself. A proof-of-concept simulation is performed on the MNIST dataset, achieving up to 98% accuracy at a cost of less than 1 nJ for all convolution, activation and pooling operations combined. The simulations are remarkably robust to thermal noise, performing well even with very small magnetic layers.
This work presents a novel general compact model for 7nm technology node devices like FinFETs. As an extension of previous conventional compact model that based on some less accurate elements including one-dimensional Poisson equation for three-dimensional devices and analytical equations for short channel effects, quantum effects and other physical effects, the general compact model combining few TCAD calibrated compact models with statistical methods can eliminate the tedious physical derivations. The general compact model has the advantages of efficient extraction, high accuracy, strong scaling capability and excellent transfer capability. As a demo application, two key design knobs of FinFET and their multiple impacts on RC control ESD power clamp circuit are systematically evaluated with implementation of the newly proposed general compact model, accounting for device design, circuit performance optimization and variation control. The performance of ESD power clamp can be improved extremely. This framework is also suitable for pathfinding researches on 5nm node gate-all-around devices, like nanowire (NW) FETs, nanosheet (NSH) FETs and beyond.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا