Do you want to publish a course? Click here

Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features Selection

67   0   0.0 ( 0 )
 Added by Nibaran Das
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cervical cancer is one of the most deadly and common diseases among women worldwide. It is completely curable if diagnosed in an early stage, but the tedious and costly detection procedure makes it unviable to conduct population-wise screening. Thus, to augment the effort of the clinicians, in this paper, we propose a fully automated framework that utilizes Deep Learning and feature selection using evolutionary optimization for cytology image classification. The proposed framework extracts Deep feature from several Convolution Neural Network models and uses a two-step feature reduction approach to ensure reduction in computation cost and faster convergence. The features extracted from the CNN models form a large feature space whose dimensionality is reduced using Principal Component Analysis while preserving 99% of the variance. A non-redundant, optimal feature subset is selected from this feature space using an evolutionary optimization algorithm, the Grey Wolf Optimizer, thus improving the classification performance. Finally, the selected feature subset is used to train an SVM classifier for generating the final predictions. The proposed framework is evaluated on three publicly available benchmark datasets: Mendeley Liquid Based Cytology (4-class) dataset, Herlev Pap Smear (7-class) dataset, and the SIPaKMeD Pap Smear (5-class) dataset achieving classification accuracies of 99.47%, 98.32% and 97.87% respectively, thus justifying the reliability of the approach. The relevant codes for the proposed approach can be found in: https://github.com/DVLP-CMATERJU/Two-Step-Feature-Enhancement

rate research

Read More

Liquid-based cytology (LBC) is a reliable automated technique for the screening of Papanicolaou (Pap) smear data. It is an effective technique for collecting a majority of the cervical cells and aiding cytopathologists in locating abnormal cells. Most methods published in the research literature rely on accurate cell segmentation as a prior, which remains challenging due to a variety of factors, e.g., stain consistency, presence of clustered cells, etc. We propose a method for automatic classification of cervical slide images through generation of labeled cervical patch data and extracting deep hierarchical features by fine-tuning convolution neural networks, as well as a novel graph-based cell detection approach for cellular level evaluation. The results show that the proposed pipeline can classify images of both single cell and overlapping cells. The VGG-19 model is found to be the best at classifying the cervical cytology patch data with 95 % accuracy under precision-recall curve.
Cervical cancer is the fourth most common category of cancer, affecting more than 500,000 women annually, owing to the slow detection procedure. Early diagnosis can help in treating and even curing cancer, but the tedious, time-consuming testing process makes it impossible to conduct population-wise screening. To aid the pathologists in efficient and reliable detection, in this paper, we propose a fully automated computer-aided diagnosis tool for classifying single-cell and slide images of cervical cancer. The main concern in developing an automatic detection tool for biomedical image classification is the low availability of publicly accessible data. Ensemble Learning is a popular approach for image classification, but simplistic approaches that leverage pre-determined weights to classifiers fail to perform satisfactorily. In this research, we use the Sugeno Fuzzy Integral to ensemble the decision scores from three popular pretrained deep learning models, namely, Inception v3, DenseNet-161 and ResNet-34. The proposed Fuzzy fusion is capable of taking into consideration the confidence scores of the classifiers for each sample, and thus adaptively changing the importance given to each classifier, capturing the complementary information supplied by each, thus leading to superior classification performance. We evaluated the proposed method on three publicly available datasets, the Mendeley Liquid Based Cytology (LBC) dataset, the SIPaKMeD Whole Slide Image (WSI) dataset, and the SIPaKMeD Single Cell Image (SCI) dataset, and the results thus yielded are promising. Analysis of the approach using GradCAM-based visual representations and statistical tests, and comparison of the method with existing and baseline models in literature justify the efficacy of the approach.
Across the globe, remote image data is rapidly being collected for the assessment of benthic communities from shallow to extremely deep waters on continental slopes to the abyssal seas. Exploiting this data is presently limited by the time it takes for experts to identify organisms found in these images. With this limitation in mind, a large effort has been made globally to introduce automation and machine learning algorithms to accelerate both classification and assessment of marine benthic biota. One major issue lies with organisms that move with swell and currents, like kelps. This paper presents an automatic hierarchical classification method (local binary classification as opposed to the conventional flat classification) to classify kelps in images collected by autonomous underwater vehicles. The proposed kelp classification approach exploits learned feature representations extracted from deep residual networks. We show that these generic features outperform the traditional off-the-shelf CNN features and the conventional hand-crafted features. Experiments also demonstrate that the hierarchical classification method outperforms the traditional parallel multi-class classifications by a significant margin (90.0% vs 57.6% and 77.2% vs 59.0%) on Benthoz15 and Rottnest datasets respectively. Furthermore, we compare different hierarchical classification approaches and experimentally show that the sibling hierarchical training approach outperforms the inclusive hierarchical approach by a significant margin. We also report an application of our proposed method to study the change in kelp cover over time for annually repeated AUV surveys.
261 - Rong Kang , Jieqi Shi , Xueming Li 2019
As the foundation of driverless vehicle and intelligent robots, Simultaneous Localization and Mapping(SLAM) has attracted much attention these days. However, non-geometric modules of traditional SLAM algorithms are limited by data association tasks and have become a bottleneck preventing the development of SLAM. To deal with such problems, many researchers seek to Deep Learning for help. But most of these studies are limited to virtual datasets or specific environments, and even sacrifice efficiency for accuracy. Thus, they are not practical enough. We propose DF-SLAM system that uses deep local feature descriptors obtained by the neural network as a substitute for traditional hand-made features. Experimental results demonstrate its improvements in efficiency and stability. DF-SLAM outperforms popular traditional SLAM systems in various scenes, including challenging scenes with intense illumination changes. Its versatility and mobility fit well into the need for exploring new environments. Since we adopt a shallow network to extract local descriptors and remain others the same as original SLAM systems, our DF-SLAM can still run in real-time on GPU.
Since 2014, very deep convolutional neural networks have been proposed and become the must-have weapon for champions in all kinds of competition. In this report, a pipeline is introduced to perform the classification of smoking and calling by modifying the pretrained inception V3. Brightness enhancing based on deep learning is implemented to improve the classification of this classification task along with other useful training tricks. Based on the quality and quantity results, it can be concluded that this pipeline with small biased samples is practical and useful with high accuracy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا