Do you want to publish a course? Click here

A Randomness Threshold for Online Bipartite Matching, via Lossless Online Rounding

59   0   0.0 ( 0 )
 Added by David Wajc
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Over three decades ago, Karp, Vazirani and Vazirani (STOC90) introduced the online bipartite matching problem. They observed that deterministic algorithms competitive ratio for this problem is no greater than $1/2$, and proved that randomized algorithms can do better. A natural question thus arises: emph{how random is random}? i.e., how much randomness is needed to outperform deterministic algorithms? The textsc{ranking} algorithm of Karp et al.~requires $tilde{O}(n)$ random bits, which, ignoring polylog terms, remained unimproved. On the other hand, Pena and Borodin (TCS19) established a lower bound of $(1-o(1))loglog n$ random bits for any $1/2+Omega(1)$ competitive ratio. We close this doubly-exponential gap, proving that, surprisingly, the lower bound is tight. In fact, we prove a emph{sharp threshold} of $(1pm o(1))loglog n$ random bits for the randomness necessary and sufficient to outperform deterministic algorithms for this problem, as well as its vertex-weighted generalization. This implies the same threshold for the advice complexity (nondeterminism) of these problems. Similar to recent breakthroughs in the online matching literature, for edge-weighted matching (Fahrbach et al.~FOCS20) and adwords (Huang et al.~FOCS20), our algorithms break the barrier of $1/2$ by randomizing matching choices over two neighbors. Unlike these works, our approach does not rely on the recently-introduced OCS machinery, nor the more established randomized primal-dual method. Instead, our work revisits a highly-successful online design technique, which was nonetheless under-utilized in the area of online matching, namely (lossless) online rounding of fractional algorithms. While this technique is known to be hopeless for online matching in general, we show that it is nonetheless applicable to carefully designed fractional algorithms with additional (non-convex) constraints.



rate research

Read More

Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal competitive ratio of $1-1/e$. Later, Aggarwal et al. (SODA 2011) generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial $1/2$-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing $1/2$ barrier and achieves a competitive ratio of at least $0.5086$. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013) that restricts beating a $1/2$ competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance---modeled via total weight---of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (osbm) problem, where the goal is to maximize a submodular function $f$ over the set of matched edges. This objective is general enough to capture the notion of both diversity (emph{e.g.,} a weighted coverage function) and relevance (emph{e.g.,} the traditional linear function)---as well as many other natural objective functions occurring in practice (emph{e.g.,} limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well-studied benchmark is the optimum online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not omniscient. What is the computational complexity of the optimum online? How well can a polynomial-time algorithm approximate it? We study the above questions for the online stochastic maximum-weight matching problem under vertex arrivals. For this problem, a number of $1/2$-competitive algorithms are known against optimum offline. This is the best possible ratio for this problem, as it generalizes the original single-item prophet inequality problem. We present a polynomial-time algorithm which approximates the optimal online algorithm within a factor of $0.51$ -- beating the best-possible prophet inequality. In contrast, we show that it is PSPACE-hard to approximate this problem within some constant $alpha < 1$.
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that random arrivals help beating the 1-1/e barrier even in the vertex-weighted case. We build on the randomized primal-dual framework by Devanur et al. (SODA 2013) and design a two dimensional gain sharing function, which depends not only on the rank of the offline vertex, but also on the arrival time of the online vertex. To our knowledge, this is the first competitive ratio strictly larger than 1-1/e for an online bipartite matching problem achieved under the randomized primal-dual framework. Our algorithm has a natural interpretation that offline vertices offer a larger portion of their weights to the online vertices as time goes by, and each online vertex matches the neighbor with the highest offer at its arrival.
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution over the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight $O(log n)$-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of $O(log n)$ has long been conjectured and remains a tantalizing open question. In this paper, we show improved results in the i.i.d arrival model. We show how the i.i.d model can be used to give substantially better algorithms: our main result is an $O((log log log n)^2)$-competitive algorithm in this model. Along the way we give a $9$-competitive algorithm for the line and tree metrics. Both results imply a strict separation between the i.i.d model and the adversarial and random order models, both for general metrics and these much-studied metrics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا