We present lattice calculations of the low-lying spectrum of $^{12}$C using a simple nucleon-nucleon interaction that is independent of spin and isospin and therefore invariant under Wigners SU(4) symmetry. We find strong signals for all excited states up to $sim 15$~MeV above the ground state, and explore the structure of each state using a large variety of $alpha$ cluster and harmonic oscillator trial states, projected onto given irreducible representations of the cubic group. We are able to verify earlier findings for the $alpha$ clustering in the Hoyle state and the second $2^+$ state of $^{12}$C. The success of these calculations to describe the full low-lying energy spectrum using spin-independent interactions suggest that either the spin-orbit interactions are somewhat weak in the $^{12}$C system, or the effects of $alpha$ clustering are diminishing their influence. This is in agreement with previous findings from {it ab initio} shell model calculations.
We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigners SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory (EFT) that is an expansion in powers of $R/a$, with $R$ the range of the nuclear force and $a$ the nucleon-nucleon ($N!N$) scattering lengths. In the Wigner-SU(4) limit, the triton and Helium-3 point charge radii are equal. At NLO in the range expansion both are $1.66$ fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the $N!N$ scattering lengths gives a ${}^3mathrm{H}$ point charge radius of $1.58$ fm, which is remarkably close to the experimental number, $1.5978pm0.040$ fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ${}^3mathrm{He}$ point charge radius we find $1.70$ fm, about 4% away from the experimental value of $1.77527pm0.0054$ fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigners SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~cite{Alvarez-Ruso:2013fza}.
Lowest energy spectrum of the $^{12}$C nucleus is analyzed in the 3$alpha$ cluster model with a deep $alphaalpha$-potential of Buck, Friedrich and Wheatley with Pauli forbidden states in the $S$ and $D$ waves. The direct orthogonalization method is applied for the elimination of the 3$alpha$-Pauli forbidden states. The effects of possible first order quantum phase transition are shown in the lowest $^{12}$C($0_1^+)$ and $^{12}$C($2_1^+)$ states from weakly bound phase to a deep phase. The ground and lowest $2^+$ states of the $^{12}$C nucleus in the deep phase are created by the critical eigen states of the Pauli projector for the $0^+$ and $2^+$ three-alpha functional spaces, respectively.
Lattice calculations for hadrons are now entering the domain of resonances and scattering, necessitating a better understanding of the observed discrete energy spectrum. This is a reviewing survey about recent lattice QCD results, with some emphasis on spectrum and scattering.
We present a precise lattice computation of the slope of the effective potential for massless $(lambdaPhi^4)_4$ theory in the region of bare parameters indicated by the Brahms analysis of lattice data. Our results confirm the existence on the lattice of a remarkable phase of $(lambdaPhi^4)_4$ where Spontaneous Symmetry Breaking is generated through ``dimensional transmutation. The resulting effective potential shows no evidence for residual self-interaction effects of the shifted `Higgs field $h(x)=Phi(x)-langlePhirangle$, as predicted by ``triviality, and cannot be reproduced in perturbation theory. Accordingly the mass of the Higgs particle, by itself, does not represent a measure of any observable interaction.