We demonstrate that spin-orbit coupling (SOC) strength for electrons near the conduction band edge in few-layer $gamma$-InSe films can be tuned over a wide range. This tunability is the result of a competition between film-thickness-dependent intrinsic and electric-field-induced SOC, potentially, allowing for electrically switchable spintronic devices. Using a hybrid $mathbf{kcdot p}$ tight-binding model, fully parameterized with the help of density functional theory computations, we quantify SOC strength for various geometries of InSe-based field-effect transistors. The theoretically computed SOC strengths are compared with the results of weak antilocalization measurements on dual-gated multilayer InSe films, interpreted in terms of Dyakonov-Perel spin relaxation due to SOC, showing a good agreement between theory and experiment.