No Arabic abstract
With current high precision collider data, the reliable estimation of theoretical uncertainties due to missing higher orders (MHOs) in perturbation theory has become a pressing issue for collider phenomenology. Traditionally, the size of the MHOs is estimated through scale variation, a simple but ad hoc method without probabilistic interpretation. Bayesian approaches provide a compelling alternative to estimate the size of the MHOs, but it is not clear how to interpret the perturbative scales, like the factorisation and renormalisation scales, in a Bayesian framework. Recently, it was proposed that the scales can be incorporated as hidden parameters into a Bayesian model. In this paper, we thoroughly scrutinise Bayesian approaches to MHO estimation and systematically study the performance of different models on an extensive set of high-order calculations. We extend the framework in two significant ways. First, we define a new model that allows for asymmetric probability distributions. Second, we introduce a prescription to incorporate information on perturbative scales without interpreting them as hidden model parameters. We clarify how the two scale prescriptions bias the result towards specific scale choice, and we discuss and compare different Bayesian MHO estimates among themselves and to the traditional scale variation approach. Finally, we provide a practical prescription of how existing perturbative results at the standard scale variation points can be converted to 68%/95% confidence intervals in the Bayesian approach using the new public code MiHO.
We consider two approaches to estimate and characterise the theoretical uncertainties stemming from the missing higher orders in perturbative calculations in Quantum Chromodynamics: the traditional one based on renormalisation and factorisation scale variation, and the Bayesian framework proposed by Cacciari and Houdeau. We estimate uncertainties with these two methods for a comprehensive set of more than thirty different observables computed in perturbative Quantum Chromodynamics, and we discuss their performance in properly estimating the size of the higher order terms that are known. We find that scale variation with the conventional choice of varying scales within a factor of two of a central scale gives uncertainty intervals that tend to be somewhat too small to be interpretable as 68% confidence-level-heuristic ones. We propose a modified version of the Bayesian approach of Cacciari and Houdeau which performs well for non-hadronic observables and, after an appropriate choice of the relevant expansion parameter for the perturbative series, for hadronic ones too.
We present a program for the reduction of large systems of integrals to master integrals. The algorithm was first proposed by Laporta; in this paper, we implement it in MAPLE. We also develop two new features which keep the size of intermediate expressions relatively small throughout the calculation. The program requires modest input information from the user and can be used for generic calculations in perturbation theory.
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
We review our results in Refs.[1,2] for the masses and couplings of heavy-light DD(BB)-like molecules and (Qq)(Qq)-like four-quark states from relativistic QCD Laplace sum rules (LSR) where next-to-next-to-leading order (N2LO) PT corrections in the chiral limit, next-to-leading order (NLO) SU3 PT corrections and non-perturbative contributions up to dimension d=6-8 are included. The factorization properties of molecule and four-quark currents have been used for the estimate of the higher order PT corrections. New integrated compact expressions of the spectral functions at leading order (LO) of perturbative QCD and up to dimensions d< (6 - 8) non-perturbative condensates are presented. The results are summarized in Tables 5 to 10, from which we conclude, within the errors, that the observed XZ states are good candidates for being 1^{++} and 0^{++} molecules or/and four-quark states, contrary to the observed Y states which are too light compared to the predicted 1^{-pm} and 0^{-pm} states. We find that the SU3 breakings are relatively small for the masses (< 10(resp. 3)%) for the charm (resp. bottom) channels while they are large (< 20%) for the couplings which decrease faster (1/m_{b}^{3/2}) than 1/m_{b}^{1/2} of HQET. QCD spectral sum rules (QSSR) approach cannot clearly separate (within the errors) molecules from four-quark states having the same quantum numbers. Results for the BK (DK)-like molecules and (Qq)(us)-like four-quark states from [3] are also reviewed which do not favour the molecule or/and four-quark interpretation of the X(5568). We suggest to scan the charm (2327 ~ 2444) MeV and bottom (5173 ~ 5226) MeV regions for detecting the (unmixed)(cu)ds and (bu)ds states. We expect that future experimental data and lattice results will check our predictions.
We present new compact integrated expressions of SU3 breaking corrections to QCD spectral functions of heavy-light molecules and four-quark XYZ-like states at lowest order (LO) of perturbative (PT) QCD and up to d=8 condensates of the OPE. Including N2LO PT corrections in the chiral limit and NLO SU3 PT corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results for the XYZ-like masses and decay constants from QCD spectral sum rules. Systematic errors are estimated from a geometric growth of the higher order PT corrections and from some partially known d=8 non-perturbative contributions. Our optimal results, based on stability criteria, are summarized in Tables 18 to 21 and compared with some LO results in Table 22. In most channels, the SU3 corrections on the meson masses are tiny: < 10% (resp. <3%) for the c (resp. b)-quark channel but can be large for the couplings (< 20%). Within the lowest dimension currents, most of the 0^{++} and 1^{++} states are below the physical thresholds while our predictions cannot discriminate a molecule from a four-quark state. A comparison with the masses of some experimental candidates indicates that the 0^{++} X(4500) might have a large D^*_{s0}D^*_{s0} molecule component while an interpretation of the 0^{++} candidates as four-quark ground states is not supported by our findings. The 1^{++} X(4147) and X(4273) are compatible with the D^*_{s}D_{s}, bar D^*_{s0}D_{s1} molecules and/or with the axial-vector A_c four-quark ground state. Our results for the 0^{-pm}, 1^{-pm} and for different beauty states can be tested in the future data. Finally, we revisit our previous estimates [1] for the D^*_{0}D^*_{0} and D^*_{0}D_{1} and present new results for the D_1D_1.