No Arabic abstract
Recent evidence of extremely metal-rich stars found in the Sombrero galaxy (M104) halo suggests that this galaxy has undergone a recent major merger with a relatively massive galaxy. In this paper, we present wide-field deep images of the M104 outskirts obtained with a 18-cm amateur telescope with the purpose of detecting any coherent tidal features from this possible major merger. Our new data, together with a model of the M104 inner halo and scattered light from stars around the field, allow us to trace for the first time the full path of the stream on both sides of the disk of the galaxy. We fully characterize the ring-like tidal structure and we confirm that this is the only observable coherent substructure in the inner halo region. This result is in agreement with the hypothesis that M104 was created by a wet major merger more than 3.5 Gyr ago that heated up the stellar population, blurring all old substructure. We generated a set of numerical models that reproduce the formation of the observed tidal structure. Our best fit model suggests the formation of this stream in the last 3 Gyr is independent of the wet major merger that created the M104 system. Therefore, the formation of the tidal stream can put a constraint on the time when the major merger occurred.
We report the discovery of a giant stellar tidal stream in the halo of NGC 4631, a nearby edge-on spiral galaxy interacting with the spiral NGC 4656, in deep images taken with a 40-cm aperture robotic telescope. The stream has two components: a bridge-like feature extended between NGC 4631 and NGC 4656 (stream_SE) and an overdensity with extended features on the opposite side of the NGC 4631 disk (stream_NW). Together, these features extend more than 85 kpc and display a clear (g-r) colour gradient. The orientation of stream_SE relative to the orientations of NGC 4631 and NGC 4656 is not consistent with an origin from interaction between these two spirals, and is more likely debris from a satellite encounter. The stellar tidal features can be qualitatively reproduced in an N-body model of the tidal disruption of a single, massive dwarf satellite on a moderately eccentric orbit (e=0.6) around NGC 4631 over $sim$ 3.5 Gyr, with a dynamical mass ratio (m1:m2) of ~40. Both modelling and inferences from the morphology of the streams indicate these are not associated with the complex HI tidal features observed between both spirals, which likely originate from a more recent, gas-rich accretion event. The detailed structure of stream_NW suggests it may contain the progenitor of the stream, in agreement with the N-body model. In addition, stream_NW is roughly aligned with two very faint dwarf spheroidal candidates. The system of dwarf galaxies and the tidal stream around NGC 4631 can provide an additional interesting case for exploring the anisotropy distribution of satellite galaxies recently reported in Local Group spiral galaxies by means of future follow-up observations.
We report the discovery of a giant, loop-like stellar structure around the edge-on spiral galaxy NGC 4013. This arcing feature extends 6 arcmin (~26 kpc in projected distance) northeast from the center and 3 arcmin (~=12 kpc) from the disk plane; likely related features are also apparent on the southwest side of the disk, extending to 4 arcmin (~17 kpc). The detection of this low surface-brightness muR= 27.0+0.3-0.2 mag/sqarcsec) structure is independently confirmed in three separate datasets from three different telescopes. Although its true three dimensional geometry is unknown, the sky- projected morphology of this structure displays a match with the theoretical predictions for the edge-on, projected view of a stellar tidal streams of a dwarf satellite moving in a low inclined (~25deg), nearly circular orbit. Using the recent model of the Monoceros tidal stream in the Milky Way by Penarrubia et al. as template, we find that the progenitor system may have been a galaxy with an initial mass 6*10^8 Msun, of which current position and final fate is unknown. According to this simulation, the tidal stream may be approximately ~2.8 Gyr of age. Our results demonstrate that NGC 4013, previously considered a prototypical isolated disk galaxy in spite of having one of the most prominent HI warps detected thus far, may have in fact suffered a recent minor merger. This discovery highlights that undisturbed disks at high surface brightness levels in the optical but warped in HI maps may in fact reveal complex signatures of recent accretion events in deep photometric surveys.
Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby (d = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 micron Spitzer/Infrared Array Camera (IRAC) observations. Combining the near-infrared 3.6 micron data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along a ~60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution (SED) with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of -0.3 inferred along the brightest parts of the stream.
We have obtained radial velocity measurements for 51 new globular clusters around the Sombrero galaxy. These measurements were obtained using spectroscopic observations from the AAOmega spectrograph on the Anglo-Australian Telescope and the Hydra spectrograph at WIYN. Combined with our own past measurements and velocity measurements obtained from the literature we have constructed a large database of radial velocities that contains a total of 360 confirmed globular clusters. Previous studies analyses of the kinematics and mass profile of the Sombrero globular cluster system have been constrained to the inner ~9 (~24 kpc or ~5 effective radii), but our new measurements have increased the radial coverage of the data, allowing us to determine the kinematic properties of M104 out to ~15 (~41 kpc or ~9 effective radii). We use our set of radial velocities to study the GC system kinematics and to determine the mass profile and V-band mass-to-light profile of the galaxy. We find that the V-band mass-to-light ratio increases from 4.5 at the center to a value of 20.9 at 41 kpc (~9 effective radii or 15), which implies that the dark matter halo extends to the edge of our available data set. We compare our mass profile at 20 kpc (~4 effective radii or ~7.4) to the mass computed from x-ray data and find good agreement. We also use our data to look for rotation in the globular cluster system as a whole, as well as in the red and blue subpopulations. We find no evidence for significant rotation in any of these samples.
We report tentative evidence for a cold stellar stream in the ultra-diffuse galaxy NGC1052-DF2. If confirmed, this stream (which we refer to as The Maybe Stream) would be the first cold stellar stream detected outside of the Local Group. The candidate stream is very narrow and has an unusual and highly curved shape.