Do you want to publish a course? Click here

What Makes Multimodal Learning Better than Single (Provably)

138   0   0.0 ( 0 )
 Added by Yu Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The world provides us with data of multiple modalities. Intuitively, models fusingdata from different modalities outperform unimodal models, since more informationis aggregated. Recently, joining the success of deep learning, there is an influentialline of work on deep multimodal learning, which has remarkable empirical resultson various applications. However, theoretical justifications in this field are notablylacking.Can multimodal provably perform better than unimodal? In this paper, we answer this question under a most popular multimodal learningframework, which firstly encodes features from different modalities into a commonlatent space and seamlessly maps the latent representations into the task space. Weprove that learning with multiple modalities achieves a smaller population risk thanonly using its subset of modalities. The main intuition is that the former has moreaccurate estimate of the latent space representation. To the best of our knowledge,this is the first theoretical treatment to capture important qualitative phenomenaobserved in real multimodal applications. Combining with experiment results, weshow that multimodal learning does possess an appealing formal guarantee.

rate research

Read More

Recent results in the literature indicate that a residual network (ResNet) composed of a single residual block outperforms linear predictors, in the sense that all local minima in its optimization landscape are at least as good as the best linear predictor. However, these results are limited to a single residual block (i.e., shallow ResNets), instead of the deep ResNets composed of multiple residual blocks. We take a step towards extending this result to deep ResNets. We start by two motivating examples. First, we show that there exist datasets for which all local minima of a fully-connected ReLU network are no better than the best linear predictor, whereas a ResNet has strictly better local minima. Second, we show that even at the global minimum, the representation obtained from the residual block outputs of a 2-block ResNet do not necessarily improve monotonically over subsequent blocks, which highlights a fundamental difficulty in analyzing deep ResNets. Our main theorem on deep ResNets shows under simple geometric conditions that, any critical point in the optimization landscape is either (i) at least as good as the best linear predictor; or (ii) the Hessian at this critical point has a strictly negative eigenvalue. Notably, our theorem shows that a chain of multiple skip-connections can improve the optimization landscape, whereas existing results study direct skip-connections to the last hidden layer or output layer. Finally, we complement our results by showing benign properties of the near-identity regions of deep ResNets, showing depth-independent upper bounds for the risk attained at critical points as well as the Rademacher complexity.
92 - Pan Zhou , Jiashi Feng , Chao Ma 2020
It is not clear yet why ADAM-alike adaptive gradient algorithms suffer from worse generalization performance than SGD despite their faster training speed. This work aims to provide understandings on this generalization gap by analyzing their local convergence behaviors. Specifically, we observe the heavy tails of gradient noise in these algorithms. This motivates us to analyze these algorithms through their Levy-driven stochastic differential equations (SDEs) because of the similar convergence behaviors of an algorithm and its SDE. Then we establish the escaping time of these SDEs from a local basin. The result shows that (1) the escaping time of both SGD and ADAM~depends on the Radon measure of the basin positively and the heaviness of gradient noise negatively; (2) for the same basin, SGD enjoys smaller escaping time than ADAM, mainly because (a) the geometry adaptation in ADAM~via adaptively scaling each gradient coordinate well diminishes the anisotropic structure in gradient noise and results in larger Radon measure of a basin; (b) the exponential gradient average in ADAM~smooths its gradient and leads to lighter gradient noise tails than SGD. So SGD is more locally unstable than ADAM~at sharp minima defined as the minima whose local basins have small Radon measure, and can better escape from them to flatter ones with larger Radon measure. As flat minima here which often refer to the minima at flat or asymmetric basins/valleys often generalize better than sharp ones~cite{keskar2016large,he2019asymmetric}, our result explains the better generalization performance of SGD over ADAM. Finally, experimental results confirm our heavy-tailed gradient noise assumption and theoretical affirmation.
358 - Jiaxin Lu , Mai Xu , Ren Yang 2018
Recent studies on image memorability have shed light on the visual features that make generic images, object images or face photographs memorable. However, a clear understanding and reliable estimation of natural scene memorability remain elusive. In this paper, we provide an attempt to answer: what exactly makes natural scene memorable. Specifically, we first build LNSIM, a large-scale natural scene image memorability database (containing 2,632 images and memorability annotations). Then, we mine our database to investigate how low-, middle- and high-level handcrafted features affect the memorability of natural scene. In particular, we find that high-level feature of scene category is rather correlated with natural scene memorability. Thus, we propose a deep neural network based natural scene memorability (DeepNSM) predictor, which takes advantage of scene category. Finally, the experimental results validate the effectiveness of DeepNSM.
Recent studies indicate that hierarchical Vision Transformer with a macro architecture of interleaved non-overlapped window-based self-attention & shifted-window operation is able to achieve state-of-the-art performance in various visual recognition tasks, and challenges the ubiquitous convolutional neural networks (CNNs) using densely slid kernels. Most follow-up works attempt to replace the shifted-window operation with other kinds of cross-window communication paradigms, while treating self-attention as the de-facto standard for window-based information aggregation. In this manuscript, we question whether self-attention is the only choice for hierarchical Vision Transformer to attain strong performance, and the effects of different kinds of cross-window communication. To this end, we replace self-attention layers with embarrassingly simple linear mapping layers, and the resulting proof-of-concept architecture termed as LinMapper can achieve very strong performance in ImageNet-1k image recognition. Moreover, we find that LinMapper is able to better leverage the pre-trained representations from image recognition and demonstrates excellent transfer learning properties on downstream dense prediction tasks such as object detection and instance segmentation. We also experiment with other alternatives to self-attention for content aggregation inside each non-overlapped window under different cross-window communication approaches, which all give similar competitive results. Our study reveals that the textbf{macro architecture} of Swin model families, other than specific aggregation layers or specific means of cross-window communication, may be more responsible for its strong performance and is the real challenger to the ubiquitous CNNs dense sliding window paradigm. Code and models will be publicly available to facilitate future research.
This work extends the analysis of the theoretical results presented within the paper Is Q-Learning Provably Efficient? by Jin et al. We include a survey of related research to contextualize the need for strengthening the theoretical guarantees related to perhaps the most important threads of model-free reinforcement learning. We also expound upon the reasoning used in the proofs to highlight the critical steps leading to the main result showing that Q-learning with UCB exploration achieves a sample efficiency that matches the optimal regret that can be achieved by any model-based approach.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا