No Arabic abstract
This paper presents GearV, a two-gear lightweight hypervisor architecture to address the some known challenges. By dividing hypervisor into some partitions, and dividing scheduling policies into Gear1 and Gear2 respectively, GearV creates a consolidated platform to run best-effort system and safety-critical system simultaneously with managed engineering effort. The two-gears architecture also simplifies retrofitting the virtualization systems. We believe that GearV can serves as a reasonable hypervisor architecture for the mix-critical IoT systems.
In this paper, we propose the first optimum process scheduling algorithm for an increasingly prevalent type of heterogeneous multicore (HEMC) system that combines high-performance big cores and energy-efficient small cores with the same instruction-set architecture (ISA). Existing algorithms are all heuristics-based, and the well-known IPC-driven approach essentially tries to schedule high scaling factor processes on big cores. Our analysis shows that, for optimum solutions, it is also critical to consider placing long running processes on big cores. Tests of SPEC 2006 cases on various big-small core combinations show that our proposed optimum approach is up to 34% faster than the IPC-driven heuristic approach in terms of total workload completion time. The complexity of our algorithm is O(NlogN) where N is the number of processes. Therefore, the proposed optimum algorithm is practical for use.
We present FLIC, a distributed software data caching framework for fogs that reduces network traffic and latency. FLICis targeted toward city-scale deployments of cooperative IoT devices in which each node gathers and shares data with surrounding devices. As machine learning and other data processing techniques that require large volumes of training data are ported to low-cost and low-power IoT systems, we expect that data analysis will be moved away from the cloud. Separation from the cloud will reduce reliance on power-hungry centralized cloud-based infrastructure. However, city-scale deployments of cooperative IoT devices often connect to the Internet with cellular service, in which service charges are proportional to network usage. IoT system architects must be clever in order to keep costs down in these scenarios. To reduce the network bandwidth required to operate city-scale deployments of cooperative IoT systems, FLIC implements a distributed cache on the IoT nodes in the fog. FLIC allows the IoT network to share its data without repetitively interacting with a simple cloud storage service reducing calls out to a backing store. Our results displayed a less than 2% miss rate on reads. Thus, allowing for only 5% of requests needing the backing store. We were also able to achieve more than 50% reduction in bytes transmitted per second.
Flat combining (FC) is a synchronization paradigm in which a single thread, holding a global lock, collects requests by multiple threads for accessing a concurrent data structure and applies their combined requests to it. Although FC is sequential, it significantly reduces synchronization overheads and cache invalidations and thus often provides better performance than that of lock-free implementations. The recent emergence of non-volatile memory (NVM) technologies increases the interest in the development of persistent (a.k.a. durable or recoverable) objects. These are objects that are able to recover from system failures and ensure consistency by retaining their state in NVM and fixing it, if required, upon recovery. Of particular interest are detectable objects that, in addition to ensuring consistency, allow recovery code to infer if a failed operation took effect before the crash and, if it did, obtain its response. In this work, we present the first FC-based persistent object. Specifically, we introduce a detectable FC-based implementation of a concurrent LIFO stack object. Our empirical evaluation establishes that thanks to the usage of flat combining, the novel stack algorithm requires a much smaller number of costly persistence instructions than competing algorithms and is therefore able to significantly outperform them.
Modern embedded technology is a driving factor in satellite miniaturization, contributing to a massive boom in satellite launches and a rapidly evolving new space industry. Miniaturized satellites, however, suffer from low reliability, as traditional hardware-based fault-tolerance (FT) concepts are ineffective for on-board computers (OBCs) utilizing modern systems-on-a-chip (SoC). Therefore, larger satellites continue to rely on proven processors with large feature sizes. Software-based concepts have largely been ignored by the space industry as they were researched only in theory, and have not yet reached the level of maturity necessary for implementation. We present the first integral, real-world solution to enable fault-tolerant general-purpose computing with modern multiprocessor-SoCs (MPSoCs) for spaceflight, thereby enabling their use in future high-priority space missions. The presented multi-stage approach consists of three FT stages, combining coarse-grained thread-level distributed self-validation, FPGA reconfiguration, and mixed criticality to assure long-term FT and excellent scalability for both resource constrained and critical high-priority space missions. Early benchmark results indicate a drastic performance increase over state-of-the-art radiation-hard OBC designs and considerably lower software- and hardware development costs. This approach was developed for a 4-year European Space Agency (ESA) project, and we are implementing a tiled MPSoC prototype jointly with two industrial partners.
Pandemics and natural disasters over the years have changed the behavior of people, which has had a tremendous impact on all life aspects. With the technologies available in each era, governments, organizations, and companies have used these technologies to track, control, and influence the behavior of individuals for a benefit. Nowadays, the use of the Internet of Things (IoT), cloud computing, and artificial intelligence (AI) have made it easier to track and change the behavior of users through changing IoT behavior. This article introduces and discusses the concept of the Internet of Behavior (IoB) and its integration with Explainable AI (XAI) techniques to provide trusted and evident experience in the process of changing IoT behavior to ultimately improving users behavior. Therefore, a system based on IoB and XAI has been proposed in a use case scenario of electrical power consumption that aims to influence user consuming behavior to reduce power consumption and cost. The scenario results showed a decrease of 522.2 kW of active power when compared to original consumption over a 200-hours period. It also showed a total power cost saving of 95.04 Euro for the same period. Moreover, decreasing the global active power will reduce the power intensity through the positive correlation.