No Arabic abstract
Kernel methods are a highly effective and widely used collection of modern machine learning algorithms. A fundamental limitation of virtually all such methods are computations involving the kernel matrix that naively scale quadratically (e.g., constructing the kernel matrix and matrix-vector multiplication) or cubically (solving linear systems) with the size of the data set $N.$ We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications (MVMs) for datasets in moderate dimensions with quasilinear complexity. Typically, analytically grounded fast multiplication methods require specialized development for specific kernels. In contrast, our scheme is based on auto-differentiation and automated symbolic computations that leverage the analytical structure of the underlying kernel. This allows the FKT to be easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Greens functions, including those of the Laplace and Helmholtz equations. Furthermore, the FKT maintains a high, quantifiable, and controllable level of accuracy -- properties that many acceleration methods lack. We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the stochastic neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
Structured CNN designed using the prior information of problems potentially improves efficiency over conventional CNNs in various tasks in solving PDEs and inverse problems in signal processing. This paper introduces BNet2, a simplified Butterfly-Net and inline with the conventional CNN. Moreover, a Fourier transform initialization is proposed for both BNet2 and CNN with guaranteed approximation power to represent the Fourier transform operator. Experimentally, BNet2 and the Fourier transform initialization strategy are tested on various tasks, including approximating Fourier transform operator, end-to-end solvers of linear and nonlinear PDEs, and denoising and deblurring of 1D signals. On all tasks, under the same initialization, BNet2 achieves similar accuracy as CNN but has fewer parameters. And Fourier transform initialized BNet2 and CNN consistently improve the training and testing accuracy over the randomly initialized CNN.
Partial differential equations (PDEs) fitting scientific data can represent physical laws with explainable mechanisms for various mathematically-oriented subjects. Most natural dynamics are expressed by PDEs with varying coefficients (PDEs-VC), which highlights the importance of PDE discovery. Previous algorithms can discover some simple instances of PDEs-VC but fail in the discovery of PDEs with coefficients of higher complexity, as a result of coefficient estimation inaccuracy. In this paper, we propose KO-PDE, a kernel optimized regression method that incorporates the kernel density estimation of adjacent coefficients to reduce the coefficient estimation error. KO-PDE can discover PDEs-VC on which previous baselines fail and is more robust against inevitable noise in data. In experiments, the PDEs-VC of seven challenging spatiotemporal scientific datasets in fluid dynamics are all discovered by KO-PDE, while the three baselines render false results in most cases. With state-of-the-art performance, KO-PDE sheds light on the automatic description of natural phenomenons using discovered PDEs in the real world.
The infinite-depth paradigm pioneered by Neural ODEs has launched a renaissance in the search for novel dynamical system-inspired deep learning primitives; however, their utilization in problems of non-trivial size has often proved impossible due to poor computational scalability. This work paves the way for scalable Neural ODEs with time-to-prediction comparable to traditional discrete networks. We introduce hypersolvers, neural networks designed to solve ODEs with low overhead and theoretical guarantees on accuracy. The synergistic combination of hypersolvers and Neural ODEs allows for cheap inference and unlocks a new frontier for practical application of continuous-depth models. Experimental evaluations on standard benchmarks, such as sampling for continuous normalizing flows, reveal consistent pareto efficiency over classical numerical methods.
The recent application of Fourier Based Iterative Reconstruction Method (FIRM) has made it possible to achieve high-quality 2D images from a fan beam Computed Tomography (CT) scan with a limited number of projections in a fast manner. The proposed methodology in this article is designed to provide 3D Radon space in linogram fashion to facilitate the use of FIRM with cone beam projections (CBP) for the reconstruction of 3D images in a low dose Cone Beam CT (CBCT).
Graph representation learning has many real-world applications, from super-resolution imaging, 3D computer vision to drug repurposing, protein classification, social networks analysis. An adequate representation of graph data is vital to the learning performance of a statistical or machine learning model for graph-structured data. In this paper, we propose a novel multiscale representation system for graph data, called decimated framelets, which form a localized tight frame on the graph. The decimated framelet system allows storage of the graph data representation on a coarse-grained chain and processes the graph data at multi scales where at each scale, the data is stored at a subgraph. Based on this, we then establish decimated G-framelet transforms for the decomposition and reconstruction of the graph data at multi resolutions via a constructive data-driven filter bank. The graph framelets are built on a chain-based orthonormal basis that supports fast graph Fourier transforms. From this, we give a fast algorithm for the decimated G-framelet transforms, or FGT, that has linear computational complexity O(N) for a graph of size N. The theory of decimated framelets and FGT is verified with numerical examples for random graphs. The effectiveness is demonstrated by real-world applications, including multiresolution analysis for traffic network, and graph neural networks for graph classification tasks.