Transport in the 2D Fermi-Hubbard Model: Lessons from Weak Coupling


Abstract in English

We use quantum kinetic theory to calculate the thermoelectric transport properties of the 2D single band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-temperature limiting behaviors of the electrical ($sim T$) and thermal ($sim T^2$) resistivities persist down to temperatures of order the hopping matrix element $Tsim t$, almost an order of magnitude below the bandwidth. At half filling, perfect nesting leads to anomalous low temperature scattering and nearly $T$-linear electrical resistivity at all temperatures. We hypothesize that the $T$-linear resistivity observed in recent cold atom experiments is continuously connected to this weak coupling physics and suggest avenues for experimental verification. We find a number of other novel thermoelectric results, such as a low-temperature Wiedemann-Franz law with Lorenz coefficient $5pi^2/36$.

Download