Do you want to publish a course? Click here

Spectro-imagery of an active tornado-like prominence: formation and evolution

106   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature of flows in tornado-prominences is an open issue. While the AIA imager aboard the Solar Dynamics Observatory (SDO) allowed us to follow the global structure of a tornado-like prominence during five hours, the Interface Region Imaging Spectrograph (IRIS), and the Multi subtractive Double pass spectrograph (MSDP) permitted to obtain plasma diagnostics of its fine structures. We aim to address two questions. Is the observed plasma rotation conceptually acceptable in a flux rope magnetic support configuration with dips? How is the plasma density distributed in the tornado-like prominence? We calculated line-of-sight velocities and non-thermal line widths using Gaussian fitting for Mg II lines and bisector method for H-alpha line. We determined the electron density from Mg II line integrated intensities and profile fitting methods using 1D NLTE radiative transfer theory models. The global structure of the prominence observed in H-alpha, and Mg II h and k lines fits with a magnetic field structure configuration with dips. Coherent Dopplershifts in red- and blue-shifted areas observed in both lines were detected along rapidly-changing vertical and horizontal structures. However, the tornado at the top of the prominence consists of multiple-fine threads with opposite flows suggesting counter streaming flows rather than rotation. Surprisingly we found that the electron density at the top of the prominence could be larger (10^11 cm^{-3}) than in the inner part of the prominence. We suggest that the tornado is in a formation state with cooling of hot plasma in a first phase, and following that, a phase of leakage of the formed blobs with large transverse flows of material along long loops extended away of the UV prominence top. The existence of such long magnetic field lines on both sides of the prominence would avoid the tornado-like prominence to really turn around its axis.



rate research

Read More

175 - M. Luna , J. T. Karpen , 2012
We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of an intermediate quiescent prominence. We combine the magnetic field structure with one-dimensional independent simulations of many flux tubes, of a three-dimensional sheared double arcade, in which the thermal nonequilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the field line dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The threads are the principal contributors to the total mass. The total prominence mass is in agreement with observations, assuming a reasonable filling factor. The motion of the threads is basically horizontal, while blobs move in all directions along the field. The peak velocities for both populations are comparable. We have generated synthetic images of the whole structure in an H$alpha$ proxy and in two EUV channels of the AIA instrument aboard SDO, thus showing the plasma at cool, warm, and hot temperatures. The predicted differential emission measure of our system agrees very well with observations. We conclude that the sheared-arcade magnetic structure and plasma behavior driven by thermal nonequilibrium fit well the abundant observational evidence for typical intermediate prominences.
129 - C. Kuckein 2013
Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation models. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.
124 - E. Tavabi , S. Koutchmy , 2018
We examine the dynamical behavior of white light polar plume structures in the inner corona that are observed from the ground during total solar eclipses, based on their EUV hot and cool emission line counterparts observed from space. EUV observations from SDO/AIA of a sequence of rapidly varying coronal hole structures are analyzed. Evidence of events showing acceleration in the 1.25 Mk line of Fe XII at 193 A is given. The structures along the plume show an outward velocity of about 140 kms-1 that can be interpreted as an upwards propagating wave in the 304 A and 171 A lines; higher speeds are seen in 193 A (up to 1000 km/s). The ejection of the cold He II plasma is delayed by about 4 min in the lowest layer and more than 12 min in the highest level compared to the hot 193 A behavior. A study of the dynamics using time-slice diagrams reveals that a large amount of fast ejected material originates from below the plume, at the footpoints. The release of plasma material appears to come from a cylinder with quasi-parallel edge-enhanced walls. After the initial phase of a longitudinal acceleration, the speed substantially reduces and the ejecta disperse into the environment. Finally, the detailed temporal and spatial relationships between the cool and hot components were studied with simultaneous multi-wavelength observations, using more AIA data. The outward-propagating perturbation of the presumably magnetic walls of polar plumes supports the suggestion that Alfven waves propagate outwardly along these radially extended walls.
The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the emph{Hinode} satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) A dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca textsc{ii} H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.
105 - Jianchao Xue , Hui Li , Yang Su 2021
Prominence eruption is closely related to coronal mass ejections and is an important topic in solar physics. Spectroscopic observation is an effective way to explore the plasma properties, but the spectral observations of eruptive prominences are rare. In this paper we will introduce an eruptive polar crown prominence with spectral observations from the Interface Region Imaging Spectrograph (IRIS), and try to explain some phenomena that are rarely reported in previous works. The eruptive prominence experiences a slow-rise and fast-rise phase, while the line-of-sight motions of the prominence plasma could be divided into three periods: two hours before the fast-rise phase, opposite Doppler shifts are found at the two sides of the prominence axis;then, red shifts dominate the prominence gradually; in the fast-rise phase, the prominence gets to be blue-shifted. During the second period, a faint component appears in Mg II k window with a narrow line width and a large red shift. A faint region is also found in AIA 304-angstrom images along the prominence spine, and the faint region gets darker during the expansion of the spine. We propose that the opposite Doppler shifts in the first period is a feature of the polar crown prominence that we studied. The red shifts in the second period is possibly due to mass drainage during the elevation of the prominence spine, which could accelerate the eruption in return. The blue shifts in the third period is due to that the prominence erupts toward the observer. We suggest that the faint component appears due to the decreasing of the plasma density, and the latter results from the expansion of the prominence spine.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا