Do you want to publish a course? Click here

Multi-output Gaussian Processes for Uncertainty-aware Recommender Systems

86   0   0.0 ( 0 )
 Added by Florian Buettner
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recommender systems are often designed based on a collaborative filtering approach, where user preferences are predicted by modelling interactions between users and items. Many common approaches to solve the collaborative filtering task are based on learning representations of users and items, including simple matrix factorization, Gaussian process latent variable models, and neural-network based embeddings. While matrix factorization approaches fail to model nonlinear relations, neural networks can potentially capture such complex relations with unprecedented predictive power and are highly scalable. However, neither of them is able to model predictive uncertainties. In contrast, Gaussian Process based models can generate a predictive distribution, but cannot scale to large amounts of data. In this manuscript, we propose a novel approach combining the representation learning paradigm of collaborative filtering with multi-output Gaussian processes in a joint framework to generate uncertainty-aware recommendations. We introduce an efficient strategy for model training and inference, resulting in a model that scales to very large and sparse datasets and achieves competitive performance in terms of classical metrics quantifying the reconstruction error. In addition to accurately predicting user preferences, our model also provides meaningful uncertainty estimates about that prediction.



rate research

Read More

Context-aware recommender systems (CARS) have gained increasing attention due to their ability to utilize contextual information. Compared to traditional recommender systems, CARS are, in general, able to generate more accurate recommendations. Latent factors approach accounts for a large proportion of CARS. Recently, a non-linear Gaussian Process (GP) based factorization method was proven to outperform the state-of-the-art methods in CARS. Despite its effectiveness, GP model-based methods can suffer from over-fitting and may not be able to determine the impact of each context automatically. In order to address such shortcomings, we propose a Gaussian Process Latent Variable Model Factorization (GPLVMF) method, where we apply an appropriate prior to the original GP model. Our work is primarily inspired by the Gaussian Process Latent Variable Model (GPLVM), which was a non-linear dimensionality reduction method. As a result, we improve the performance on the real datasets significantly as well as capturing the importance of each context. In addition to the general advantages, our method provides two main contributions regarding recommender system settings: (1) addressing the influence of bias by setting a non-zero mean function, and (2) utilizing real-valued contexts by fixing the latent space with real values.
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural network suffers from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and distinguishing true positive and false positive predictions, with a comparable generalisation performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.
We apply numerical methods in combination with finite-difference-time-domain (FDTD) simulations to optimize transmission properties of plasmonic mirror color filters using a multi-objective figure of merit over a five-dimensional parameter space by utilizing novel multi-fidelity Gaussian processes approach. We compare these results with conventional derivative-free global search algorithms, such as (single-fidelity) Gaussian Processes optimization scheme, and Particle Swarm Optimization---a commonly used method in nanophotonics community, which is implemented in Lumerical commercial photonics software. We demonstrate the performance of various numerical optimization approaches on several pre-collected real-world datasets and show that by properly trading off expensive information sources with cheap simulations, one can more effectively optimize the transmission properties with a fixed budget.
How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a robotic system, intelligently trading off computer simulations and real robot testings can lead to significant savings. Existing methods, such as multi-fidelity GP-UCB or Entropy Search-based approaches, either make simplistic assumptions on the interaction among different fidelities or use simple heuristics that lack theoretical guarantees. In this paper, we study multi-fidelity Bayesian optimization with complex structural dependencies among multiple outputs, and propose MF-MI-Greedy, a principled algorithmic framework for addressing this problem. In particular, we model different fidelities using additive Gaussian processes based on shared latent structures with the target function. Then we use cost-sensitive mutual information gain for efficient Bayesian global optimization. We propose a simple notion of regret which incorporates the cost of different fidelities, and prove that MF-MI-Greedy achieves low regret. We demonstrate the strong empirical performance of our algorithm on both synthetic and real-world datasets.
Multi-output Gaussian processes (MOGPs) leverage the flexibility and interpretability of GPs while capturing structure across outputs, which is desirable, for example, in spatio-temporal modelling. The key problem with MOGPs is their computational scaling $O(n^3 p^3)$, which is cubic in the number of both inputs $n$ (e.g., time points or locations) and outputs $p$. For this reason, a popular class of MOGPs assumes that the data live around a low-dimensional linear subspace, reducing the complexity to $O(n^3 m^3)$. However, this cost is still cubic in the dimensionality of the subspace $m$, which is still prohibitively expensive for many applications. We propose the use of a sufficient statistic of the data to accelerate inference and learning in MOGPs with orthogonal bases. The method achieves linear scaling in $m$ in practice, allowing these models to scale to large $m$ without sacrificing significant expressivity or requiring approximation. This advance opens up a wide range of real-world tasks and can be combined with existing GP approximations in a plug-and-play way. We demonstrate the efficacy of the method on various synthetic and real-world data sets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا