Do you want to publish a course? Click here

Cooperative Stochastic Multi-agent Multi-armed Bandits Robust to Adversarial Corruptions

78   0   0.0 ( 0 )
 Added by Junyan Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of stochastic bandits with adversarial corruptions in the cooperative multi-agent setting, where $V$ agents interact with a common $K$-armed bandit problem, and each pair of agents can communicate with each other to expedite the learning process. In the problem, the rewards are independently sampled from distributions across all agents and rounds, but they may be corrupted by an adversary. Our goal is to minimize both the overall regret and communication cost across all agents. We first show that an additive term of corruption is unavoidable for any algorithm in this problem. Then, we propose a new algorithm that is agnostic to the level of corruption. Our algorithm not only achieves near-optimal regret in the stochastic setting, but also obtains a regret with an additive term of corruption in the corrupted setting, while maintaining efficient communication. The algorithm is also applicable for the single-agent corruption problem, and achieves a high probability regret that removes the multiplicative dependence of $K$ on corruption level. Our result of the single-agent case resolves an open question from Gupta et al. [2019].



rate research

Read More

We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click fraud, fake reviews and email spam. The goal of this model is to encourage the design of bandit algorithms that (i) work well in mixed adversarial and stochastic models, and (ii) whose performance deteriorates gracefully as we move from fully stochastic to fully adversarial models. In our model, the rewards for all arms are initially drawn from a distribution and are then altered by an adaptive adversary. We provide a simple algorithm whose performance gracefully degrades with the total corruption the adversary injected in the data, measured by the sum across rounds of the biggest alteration the adversary made in the data in that round; this total corruption is denoted by $C$. Our algorithm provides a guarantee that retains the optimal guarantee (up to a logarithmic term) if the input is stochastic and whose performance degrades linearly to the amount of corruption $C$, while crucially being agnostic to it. We also provide a lower bound showing that this linear degradation is necessary if the algorithm achieves optimal performance in the stochastic setting (the lower bound works even for a known amount of corruption, a special case in which our algorithm achieves optimal performance without the extra logarithm).
We consider the problem where $N$ agents collaboratively interact with an instance of a stochastic $K$ arm bandit problem for $K gg N$. The agents aim to simultaneously minimize the cumulative regret over all the agents for a total of $T$ time steps, the number of communication rounds, and the number of bits in each communication round. We present Limited Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch based algorithm where each agent communicates only after the end of the epoch and shares the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a regret of $tilde{O}left(sqrt{({K/N}+ N)T}right)$, communicates for $O(log T)$ steps and broadcasts $O(log K)$ bits in each communication step. We extend the work to sparse graphs with maximum degree $K_G$, and diameter $D$ and propose LCC-UCB-GRAPH which enjoys a regret bound of $tilde{O}left(Dsqrt{(K/N+ K_G)DT}right)$. Finally, we empirically show that the LCC-UCB and the LCC-UCB-GRAPH algorithm perform well and outperform strategies that communicate through a central node
We introduce a framework for decentralized online learning for multi-armed bandits (MAB) with multiple cooperative players. The reward obtained by the players in each round depends on the actions taken by all the players. Its a team setting, and the objective is common. Information asymmetry is what makes the problem interesting and challenging. We consider three types of information asymmetry: action information asymmetry when the actions of the players cant be observed but the rewards received are common; reward information asymmetry when the actions of the other players are observable but rewards received are IID from the same distribution; and when we have both action and reward information asymmetry. For the first setting, we propose a UCB-inspired algorithm that achieves $O(log T)$ regret whether the rewards are IID or Markovian. For the second section, we offer an environment such that the algorithm given for the first setting gives linear regret. For the third setting, we show that a variation of the `explore then commit algorithm achieves almost log regret.
This paper studies a new variant of the stochastic multi-armed bandits problem, where the learner has access to auxiliary information about the arms. The auxiliary information is correlated with the arm rewards, which we treat as control variates. In many applications, the arm rewards are a function of some exogenous values, whose mean value is known a priori from historical data and hence can be used as control variates. We use the control variates to obtain mean estimates with smaller variance and tighter confidence bounds. We then develop an algorithm named UCB-CV that uses improved estimates. We characterize the regret bounds in terms of the correlation between the rewards and control variates. The experiments on synthetic data validate the performance guarantees of our proposed algorithm.
We study the heavy-tailed stochastic bandit problem in the cooperative multi-agent setting, where a group of agents interact with a common bandit problem, while communicating on a network with delays. Existing algorithms for the stochastic bandit in this setting utilize confidence intervals arising from an averaging-based communication protocol known as~textit{running consensus}, that does not lend itself to robust estimation for heavy-tailed settings. We propose textsc{MP-UCB}, a decentralized multi-agent algorithm for the cooperative stochastic bandit that incorporates robust estimation with a message-passing protocol. We prove optimal regret bounds for textsc{MP-UCB} for several problem settings, and also demonstrate its superiority to existing methods. Furthermore, we establish the first lower bounds for the cooperative bandit problem, in addition to providing efficient algorithms for robust bandit estimation of location.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا