No Arabic abstract
We study the structures of ultra-relativistic jets injected into the intracluster medium (ICM) and the associated flow dynamics, such as shocks, velocity shear, and turbulence, through three-dimensional relativistic hydrodynamic (RHD) simulations. To that end, we have developed a high-order accurate RHD code, equipped with a weighted essentially non-oscillatory (WENO) scheme and a realistic equation of state (Seo et al. 2021, Paper I). Using the code, we explore a set of jet models with the parameters relevant to FR-II radio galaxies. We confirm that the overall jet morphology is primarily determined by the jet power, and the jet-to-background density and pressure ratios play secondary roles. Jets with higher powers propagate faster, resulting in more elongated structures, while those with lower powers produce more extended cocoons. Shear interfaces in the jet are dynamically unstable, and hence, chaotic structures with shocks and turbulence develop. We find that the fraction of the jet-injected energy dissipated through shocks and turbulence is greater in less powerful jets, although the actual amount of the dissipated energy is larger in more powerful jets. In lower power jets, the backflow is dominant in the energy dissipation owing to the broad cocoon filled with shocks and turbulence. In higher power jets, by contrast, both the backflow and jet spine flow are important for the energy dissipation. Our results imply that different mechanisms, such as diffusive shock acceleration, shear acceleration, and stochastic turbulent acceleration, may be involved in the production of ultra-high energy cosmic rays in FR-II radio galaxies.
In an attempt to investigate the structures of ultra-relativistic jets injected into the intracluster medium (ICM) and the associated flow dynamics, such as shocks, velocity shear, and turbulence, we have developed a new special relativistic hydrodynamic (RHD) code in the Cartesian coordinates, based on the weighted essentially non-oscillatory (WENO) scheme. It is a finite difference scheme of high spatial accuracy, which has been widely employed for solving hyperbolic systems of conservation equations. The code is equipped with different WE
In this paper three dimensional relativistic hydrodynamic simulations of AGN jets are presented to investigate the FR I/FR II dichotomy. Three simulations are presented which illustrates the difference in morphology for high/low Lorentz factor injection as well as a stratified background medium. Lorentz factors of 10 and 1.0014 were used for the high and low Lorentz factor cases respectively. The hydrodynamic simulations show a division in the morphology of jets based on their initial injection luminosity. An additional simulation was set up to investigate the evolution of the low Lorentz factor jet if the mass injection was lowered after a certain time. A synchrotron emission model was applied to these simulations to reproduce intensity maps at radio frequencies (1.5GHz) which were compared to the observed emission structures of FR I/FR II radio galaxies. The effect of Doppler boosting on the intensity maps was also investigated for different polar angles. The intensity maps of both the high and low Lorentz factor cases reproduced emission structures that resemble those of FR II type radio galaxies with a dominant cocoon region containing time dependent hot spots and filaments. An FR I like structure was, however, produced for the low Lorentz factor case if the mass injection rate was lowered after a set time period.
The energetic composition of radio lobes in the FR II galaxies $-$ estimated by comparing their radio luminosities with the powers required to inflate cavities in the external medium $-$ seems to exclude the possibility of their energetic domination by protons. Furthermore, if the jets were dominated by the kinetic energy of cold protons, it would be difficult to efficiently accelerate leptons in the jets terminal shocks. Assuming that the relative energy contents of leptons, protons and magnetic fields are preserved across the shocks, the above implies that the large-scale jets should also be energetically dominated by leptons: $P_{rm e,j} gtrsim P_{rm p,j}$. On the other hand, previous studies of small-scale jets in blazars and radio cores suggest a pair content (number of electrons and positrons per proton) of the order of $n_{rm e}/n_{rm p} sim 20$. Assuming further that the particle composition of jets does not evolve beyond the blazar scales, we show that this implies an average random Lorentz factor of leptons in large-scale jets of $bargamma_{rm e,j} gtrsim 70(1+chi_{rm p})(20n_{rm p}/n_{rm e})$, and that the protons should be mildly relativistic with $chi_{rm p} equiv (epsilon_{rm p} + p_{rm p})/rho_{rm p} c^2 lesssim 2$, $p_{rm p}$ the pressure of protons, $epsilon_{rm p}$ the internal energy density of protons, and $rho_{rm p} c^2$ the rest-mass energy density of protons. We derive the necessary conditions for loading the inner jets by electron-positron pairs and proton-electron plasma, and provide arguments that heating of leptons in jets is dominated by magnetic reconnection.
We present a formalism of the dynamics of internal shocks in relativistic jets where the source has a time-dependent injection velocity and mass-loss rate. The variation of the injection velocity produces a two-shock wave structure, the working surface, that moves along the jet. This new formalism takes into account the fact that momentum conservation is not valid for relativistic flows where the relativistic mass lost by radiation must be taken into account, in contrast to the classic regime. We find analytic solutions for the working surface velocity and radiated energy for the particular case of a step function variability of the injection parameters. We model two cases: a pulse of fast material and a pulse of slow material (with respect to the mean flow). Applying these models to gamma ray burst light curves, one can determine the ratio of the Lorentz factors gamma_2 / gamma_1 and the ratio of the mass-loss rates dot{m_2} / dot{m_1} of the upstream and downstream flows. As an example, we apply this model to the sources GRB 080413B and GRB 070318 and find the values of these ratios. Assuming a Lorentz factor gamma_1=100, we further estimate jet mass-loss rates between dot{m_1} ~ 10^{-5}-1 Msun.yr^{-1}. We also calculate the fraction of the injected mass lost by radiation. For GRB 070318 this fraction is ~7%. In contrast, for GRB 080413B this fraction is larger than 50%; in this case radiation losses clearly affect the dynamics of the internal shocks.
lasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. Our initial results of a jet-ambient interaction with anti-parallel magnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.