Do you want to publish a course? Click here

Discrete analytic Schur functions

66   0   0.0 ( 0 )
 Added by Daniel Alpay A
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We introduce the Schur class of functions, discrete analytic on the integer lattice in the complex plane. As a special case, we derive the explicit form of discrete analytic Blaschke factors and solve the related basic interpolation problem.

rate research

Read More

A boundary Nevanlinna-Pick interpolation problem is posed and solved in the quaternionic setting. Given nonnegative real numbers $kappa_1, ldots, kappa_N$, quaternions $p_1, ldots, p_N$ all of modulus $1$, so that the $2$-spheres determined by each point do not intersect and $p_u eq 1$ for $u = 1,ldots, N$, and quaternions $s_1, ldots, s_N$, we wish to find a slice hyperholomorphic Schur function $s$ so that $$lim_{substack{rrightarrow 1 rin(0,1)}} s(r p_u) = s_uquad {rm for} quad u=1,ldots, N,$$ and $$lim_{substack{rrightarrow 1 rin(0,1)}}frac{1-s(rp_u)overline{s_u}}{1-r}lekappa_u,quad {rm for} quad u=1,ldots, N.$$ Our arguments relies on the theory of slice hyperholomorphic functions and reproducing kernel Hilbert spaces.
372 - Pisheng Ding 2021
Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning commutation with rotation, continuation beyond the domain of univalence, and periodicity.
Let $phi$ be a normalized convex function defined on open unit disk $mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f(z)+ alpha z f(z) prec phi(z)$ for all $zin mathbb{D}$, we investigate the distortion theorem and growth theorem. Further, the bounds on initial logarithmic coefficients, inverse coefficient and the second Hankel determinant involving the inverse coefficients are examined.
We introduce the class of analytic functions $$mathcal{F}(psi):= left{fin mathcal{A}: left(frac{zf(z)}{f(z)}-1right) prec psi(z),; psi(0)=0 right},$$ where $psi$ is univalent and establish the growth theorem with some geometric conditions on $psi$ and obtain the Koebe domain with some related sharp inequalities. Note that functions in this class may not be univalent. As an application, we obtain the growth theorem for the complete range of $alpha$ and $beta$ for the functions in the classes $mathcal{BS}(alpha):= {fin mathcal{A} : ({zf(z)}/{f(z)})-1 prec {z}/{(1-alpha z^2)},; alphain [0,1) }$ and $mathcal{S}_{cs}(beta):= {fin mathcal{A} : ({zf(z)}/{f(z)})-1 prec {z}/({(1-z)(1+beta z)}),; betain [0,1) }$, respectively which improves the earlier known bounds. The sharp Bohr-radii for the classes $S(mathcal{BS}(alpha))$ and $mathcal{BS}(alpha)$ are also obtained. A few examples as well as certain newly defined classes on the basis of geometry are also discussed.
This paper mainly uses the nonnegative continuous function ${zeta_n(r)}_{n=0}^{infty}$ to redefine the Bohr radius for the class of analytic functions satisfying $real f(z)<1$ in the unit disk $|z|<1$ and redefine the Bohr radius of the alternating series $A_f(r)$ with analytic functions $f$ of the form $f(z)=sum_{n=0}^{infty}a_{pn+m}z^{pn+m}$ in $|z|<1$. In the latter case, one can also get information about Bohr radius for even and odd analytic functions. Moreover, the relationships between the majorant series $M_f(r)$ and the odd and even bits of $f(z)$ are also established. We will prove that most of results are sharp.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا