Do you want to publish a course? Click here

MAHGIC: A Model Adapter for the Halo-Galaxy Inter-Connection

81   0   0.0 ( 0 )
 Added by Yangyao Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a model to establish the interconnection between galaxies and their dark matter halos. We use Principal Component Analysis (PCA) to reduce the dimensionality of both the mass assembly histories of halos/subhalos and the star formation histories of galaxies, and Gradient Boosted Decision Trees (GBDT) to transform halo/subhalo properties into galaxy properties. We use two sets of hydrodynamic simulations to motivate our model architecture and to train the transformation. We then apply the two sets of trained models to dark matter only (DMO) simulations to show that the transformation is reliable and statistically accurate. The model trained by a high-resolution hydrodynamic simulation, or by a set of such simulations implementing the same physics of galaxy formation, can thus be applied to large DMO simulations to make mock copies of the hydrodynamic simulation. The model is both flexible and interpretable, which paves the way for future applications in which we will constrain the model using observations at different redshifts simultaneously and explore how galaxies form and evolve in dark matter halos empirically.



rate research

Read More

SubHalo Abundance Matching (SHAM) assumes that one (sub)halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub)halo such as its luminosity or stellar mass. This assumption implies that the dependence of Galaxy Luminosity Functions (GLFs) and the Galaxy Stellar Mass Function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from an SDSS sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g-r color for all galaxies and central galaxies, although it better reproduces the color dependence on environmental density of satellite galaxies.
Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.
We present new determinations of the stellar-to-halo mass relation (SHMR) at $z=0-10$ that match the evolution of the galaxy stellar mass function, the SFR$-M_*$ relation,and the cosmic star formation rate. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates, and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings: (1) The halo mass $M_{50}$ above which 50% of galaxies are quenched coincides with sSFR/sMAR$sim1$, where sMAR is the specific halo mass accretion rate. (2) $M_{50}$ increases with redshift, presumably due to cold streams being more efficient at high redshift while virial shocks and AGN feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around $M_{rm vir}sim2times10^{11}M_{odot}$. (4) The stellar mass density within 1 kpc, $Sigma_1$, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in $Sigma_1$, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower-mass galaxies. (7) Galaxies grow inside out. The marked change in the slope of the size--mass relation when galaxies became quenched, from $dlog R_{rm eff}/dlog M_*sim0.35$ to $sim2.5$, could be the result of dry minor mergers.
143 - James Aird , Alison L. Coil 2020
It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $M/M_odot$~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $approx10^{12}M_odot$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.
We present a series of results from a clustering analysis of the first data release of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey. VIDEO is the only survey currently capable of probing the bulk of stellar mass in galaxies at redshifts corresponding to the peak of star formation on degree scales. Galaxy clustering is measured with the two-point correlation function, which is calculated using a non parametric kernel based density estimator. We use our measurements to investigate the connection between the galaxies and the host dark matter halo using a halo occupation distribution methodology, deriving bias, satellite fractions, and typical host halo masses for stellar masses between $10^{9.35}M_{odot}$ and $10^{10.85}M_{odot}$, at redshifts $0.5<z<1.7$. Our results show typical halo mass increasing with stellar mass (with moderate scatter) and bias increasing with stellar mass and redshift consistent with previous studies. We find the satellite fraction increased towards low redshifts, increasing from $sim 5%$ at $zsim 1.5$, to $sim 20%$ at $zsim 0.6$, also increasing for lower mass galaxies. We combine our results to derive the stellar mass to halo mass ratio for both satellites and centrals over a range of halo masses and find the peak corresponding to the halo mass with maximum star formation efficiency to be $ sim 2 times10^{12} M_{odot}$ over cosmic time, finding no evidence for evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا