No Arabic abstract
A common optimization tool used in deep reinforcement learning is momentum, which consists in accumulating and discounting past gradients, reapplying them at each iteration. We argue that, unlike in supervised learning, momentum in Temporal Difference (TD) learning accumulates gradients that become doubly stale: not only does the gradient of the loss change due to parameter updates, the loss itself changes due to bootstrapping. We first show that this phenomenon exists, and then propose a first-order correction term to momentum. We show that this correction term improves sample efficiency in policy evaluation by correcting target value drift. An important insight of this work is that deep RL methods are not always best served by directly importing techniques from the supervised setting.
We investigate whether Jacobi preconditioning, accounting for the bootstrap term in temporal difference (TD) learning, can help boost performance of adaptive optimizers. Our method, TDprop, computes a per parameter learning rate based on the diagonal preconditioning of the TD update rule. We show how this can be used in both $n$-step returns and TD($lambda$). Our theoretical findings demonstrate that including this additional preconditioning information is, surprisingly, comparable to normal semi-gradient TD if the optimal learning rate is found for both via a hyperparameter search. In Deep RL experiments using Expected SARSA, TDprop meets or exceeds the performance of Adam in all tested games under near-optimal learning rates, but a well-tuned SGD can yield similar improvements -- matching our theory. Our findings suggest that Jacobi preconditioning may improve upon typical adaptive optimization methods in Deep RL, but despite incorporating additional information from the TD bootstrap term, may not always be better than SGD.
This paper has been withdrawn by the author. This draft is withdrawn for its poor quality in english, unfortunately produced by the author when he was just starting his science route. Look at the ICML version instead: http://icml2008.cs.helsinki.fi/papers/111.pdf
Temporal-Difference (TD) learning is a general and very useful tool for estimating the value function of a given policy, which in turn is required to find good policies. Generally speaking, TD learning updates states whenever they are visited. When the agent lands in a state, its value can be used to compute the TD-error, which is then propagated to other states. However, it may be interesting, when computing updates, to take into account other information than whether a state is visited or not. For example, some states might be more important than others (such as states which are frequently seen in a successful trajectory). Or, some states might have unreliable value estimates (for example, due to partial observability or lack of data), making their values less desirable as targets. We propose an approach to re-weighting states used in TD updates, both when they are the input and when they provide the target for the update. We prove that our approach converges with linear function approximation and illustrate its desirable empirical behaviour compared to other TD-style methods.
To act and plan in complex environments, we posit that agents should have a mental simulator of the world with three characteristics: (a) it should build an abstract state representing the condition of the world; (b) it should form a belief which represents uncertainty on the world; (c) it should go beyond simple step-by-step simulation, and exhibit temporal abstraction. Motivated by the absence of a model satisfying all these requirements, we propose TD-VAE, a generative sequence model that learns representations containing explicit beliefs about states several steps into the future, and that can be rolled out directly without single-step transitions. TD-VAE is trained on pairs of temporally separated time points, using an analogue of temporal difference learning used in reinforcement learning.
Temporal-Difference learning (TD) [Sutton, 1988] with function approximation can converge to solutions that are worse than those obtained by Monte-Carlo regression, even in the simple case of on-policy evaluation. To increase our understanding of the problem, we investigate the issue of approximation errors in areas of sharp discontinuities of the value function being further propagated by bootstrap updates. We show empirical evidence of this leakage propagation, and show analytically that it must occur, in a simple Markov chain, when function approximation errors are present. For reversible policies, the result can be interpreted as the tension between two terms of the loss function that TD minimises, as recently described by [Ollivier, 2018]. We show that the upper bounds from [Tsitsiklis and Van Roy, 1997] hold, but they do not imply that leakage propagation occurs and under what conditions. Finally, we test whether the problem could be mitigated with a better state representation, and whether it can be learned in an unsupervised manner, without rewards or privileged information.