Do you want to publish a course? Click here

$it{CosmoPower} ,$: emulating cosmological power spectra for accelerated Bayesian inference from next-generation surveys

112   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present $it{CosmoPower}$, a suite of neural cosmological power spectrum emulators providing orders-of-magnitude acceleration for parameter estimation from two-point statistics analyses of Large-Scale Structure (LSS) and Cosmic Microwave Background (CMB) surveys. The emulators replace the computation of matter and CMB power spectra from Boltzmann codes; thus, they do not need to be re-trained for different choices of astrophysical nuisance parameters or redshift distributions. The matter power spectrum emulation error is less than $0.4%$ in the wavenumber range $k in [10^{-5}, 10] , mathrm{Mpc}^{-1}$, for redshift $z in [0, 5]$. $it{CosmoPower}$ emulates CMB temperature, polarisation and lensing potential power spectra in the $5sigma$ region of parameter space around the $it{Planck}$ best fit values with an error $lesssim 20%$ of the expected shot noise for the forthcoming Simons Observatory. $it{CosmoPower}$ is showcased on a joint cosmic shear and galaxy clustering analysis from the Kilo-Degree Survey, as well as on a Stage IV $it{Euclid}$-like simulated cosmic shear analysis. For the CMB case, $it{CosmoPower}$ is tested on a $it{Planck}$ 2018 CMB temperature and polarisation analysis. The emulators always recover the fiducial cosmological constraints with differences in the posteriors smaller than sampling noise, while providing a speed-up factor up to $O(10^4)$ to the complete inference pipeline. This acceleration allows posterior distributions to be recovered in just a few seconds, as we demonstrate in the $it{Planck}$ likelihood case. $it{CosmoPower}$ is written entirely in Python, can be interfaced with all commonly used cosmological samplers and is publicly available https://github.com/alessiospuriomancini/cosmopower .



rate research

Read More

We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by galaxy surveys, employs Lagrangian perturbation theory (LPT) to connect Gaussian initial conditions to the final density field, followed by a coordinate transformation to obtain the redshift space representation for comparison with data. We generate realizations of primordial and present-day matter fluctuations given a set of observations. This hierarchical approach encodes a novel AP test, extracting several orders of magnitude more information from the cosmological expansion compared to classical approaches, to infer cosmological parameters and jointly reconstruct the underlying 3D dark matter density field. The novelty of this AP test lies in constraining the comoving-redshift transformation to infer the appropriate cosmology which yields isotropic correlations of the galaxy density field, with the underlying assumption relying purely on the cosmological principle. Such an AP test does not rely explicitly on modelling the full statistics of the field. We verify in depth via simulations that this renders our test robust to model misspecification. This leads to another crucial advantage, namely that the cosmological parameters exhibit extremely weak dependence on the currently unresolved phenomenon of galaxy bias, thereby circumventing a potentially key limitation. This is consequently among the first methods to extract a large fraction of information from statistics other than that of direct density contrast correlations, without being sensitive to the amplitude of density fluctuations. We perform several statistical efficiency and consistency tests on a mock galaxy catalogue, using the SDSS-III survey as template.
Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an interferometric observation on a finite patch with incomplete uv-plane coverage, a finite beam size and a realistic noise model. With a computational complexity of O(n^{3/2}), n being the data size, Gibbs sampling provides an efficient method for analyzing upcoming cosmology observations.
Analyzes of next-generation galaxy data require accurate treatment of systematic effects such as the bias between observed galaxies and the underlying matter density field. However, proposed models of the phenomenon are either numerically expensive or too inaccurate to achieve unbiased inferences of cosmological parameters even at mildly-nonlinear scales of the data. As an alternative to constructing accurate galaxy bias models, requiring understanding galaxy formation, we propose to construct likelihood distributions for Bayesian forward modeling approaches that are insensitive to linear, scale-dependent bias and provide robustness against model misspecification. We use maximum entropy arguments to construct likelihood distributions designed to account only for correlations between data and inferred quantities. By design these correlations are insensitive to linear galaxy biasing relations, providing the desired robustness. The method is implemented and tested within a Markov Chain Monte Carlo approach. The method is assessed using a halo mock catalog based on standard full, cosmological, N-body simulations. We obtain unbiased and tight constraints on cosmological parameters exploiting only linear cross-correlation rates for $kle 0.10$ Mpc/h. Tests for halos of masses ~10$^{12}$ M$_odot$ to ~10$^{13}$ M$_odot$ indicate that it is possible to ignore all details of the linear, scale dependent, bias function while obtaining robust constraints on cosmology. Our results provide a promising path forward to analyzes of galaxy surveys without the requirement of having to accurately model the details of galaxy biasing but by designing robust likelihoods for the inference.
The tightest and most robust cosmological results of the next decade will be achieved by bringing together multiple surveys of the Universe. This endeavor has to happen across multiple layers of the data processing and analysis, e.g., enhancements are expected from combining Euclid, Rubin, and Roman (as well as other surveys) not only at the level of joint processing and catalog combination, but also during the post-catalog parts of the analysis such as the cosmological inference process. While every experiment builds their own analysis and inference framework and creates their own set of simulations, cross-survey work that homogenizes these efforts, exchanges information from numerical simulations, and coordinates details in the modeling of astrophysical and observational systematics of the corresponding datasets is crucial.
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا