No Arabic abstract
Ganymedes atmosphere is produced by charged particle sputtering and sublimation of its icy surface. Previous far-ultraviolet observations of the O{small I,}1356-{AA} and O{small I,}1304-{AA} oxygen emissions were used to infer sputtered molecular oxygen (O$_2$) as an atmospheric constituent, but an expected sublimated water (H$_2$O) component remained undetected. Here we present an analysis of high-sensitivity spectra and spectral images acquired by the Hubble Space Telescope revealing H$_2$O in Ganymedes atmosphere. The relative intensity of the oxygen emissions requires contributions from dissociative excitation of water vapor, indicating that H$_2$O is more abundant than O$_2$ around the sub-solar point. Away from the sub-solar region, the emissions are consistent with a pure O$_2$ atmosphere. Eclipse observations constrain atomic oxygen to be at least two orders of magnitude less abundant than these other species. The higher H$_2$O/O$_2$ ratio above the warmer trailing hemisphere compared to the colder leading hemisphere, the spatial concentration to the sub-solar region, and the estimated abundance of $sim$10$^{15}$ H$_2$O/cm$^{2}$ are consistent with sublimation of the icy surface as source.
We present Hubble Space Telescope observations of the active asteroid (and Geminid stream parent) 3200 Phaethon when at its closest approach to Earth (separation 0.07 AU) in 2017 December. Images were recorded within $sim$1degr~of the orbital plane, providing extra sensitivity to low surface brightness caused by scattering from a large-particle trail. We placed an upper limit to the apparent surface brightness of such a trail at 27.2 magnitudes arcsecond$^{-2}$, corresponding to an in-plane optical depth $le 3times10^{-9}$. No co-moving sources brighter than absolute magnitude 26.3, corresponding to circular equivalent radius $sim$12 m (albedo 0.12 assumed), were detected. Phaethon is too hot for near-surface ice to survive. We briefly consider the thermodynamic stability of deeply-buried ice, finding that its survival would require either a very small (regolith-like) thermal diffusivity ($< 10^{-8}$ m$^2$ s$^{-1}$), or the unexpectedly recent injection of Phaethon (timescale $lesssim$ 10$^6$ yr) into its present orbit, or both.
After the early observations of the disrupted asteroid P/2016 G1 with the 10.4m Gran Telescopio Canarias (GTC), and the modeling of the dust ejecta, we have performed a follow-up observational campaign of this object using the Hubble Space Telescope (HST) during two epochs (June 28 and July 11, 2016). The analysis of these HST images with the same model inputs obtained from the GTC images revealed a good consistency with the predicted evolution from the GTC images, so that the model is applicable to the whole observational period from late April to early July 2016. This result confirms that the resulting dust ejecta was caused by a relatively short-duration event with onset about 350 days before perihelion, and spanning about 30 days (HWHM). For a size distribution of particles with a geometric albedo of 0.15, having radii limits of 1 $mu$m and 1 cm, and following a power-law with index --3.0, the total dust mass ejected is $sim$2$times$10$^7$ kg. As was the case with the GTC observations, no condensations in the images that could be attributed to a nucleus or fragments released after the disruption event were found. However, the higher limiting magnitude reachable with the HST images in comparison with those from GTC allowed us to impose a more stringent upper limit to the observed fragments of $sim$30 m.
The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced Camera for Surveys (ACS) and parallel observations with NICMOS and WFPC2. A square field (1.8$sq$deg) has been imaged with single-orbit ACS I-F814W exposures with 50% completeness for sources 0.5arcsec in diameter at I$_{AB} $ = 26.0 mag. The ACS imaging is a key part of the COSMOS survey, providing very high sensitivity and high resolution (0.09arcsec FWHM, 0.05arcsec pixels) imaging and detecting 1.2 million objects to a limiting magnitude of 26.5 (AB). These images yield resolved morphologies for several hundred thousand galaxies. The small HST PSF also provides greatly enhanced sensitivity for weak lensing investigations of the dark matter distribution.
We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {mu}m. These time series observations were taken with the newly available spatial scan mode that increases the duty cycle by nearly a factor of two, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R*=0.11709+/-0.00038 in the white light curve with the centre of transit occurring at 2456114.345+/-0.000133 (JD). We achieve S/N levels per exposure of 1840 (0.061%) at a resolution of {Deltalambda}=19.2nm (R~70) in the 1.1173 - 1.6549{mu}m spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultant transmission spectrum shows a significant absorption above the 5-{sigma} level matching the 1.4{mu}m water absorption band. In solar composition models, the water absorption is sensitive to the ~1 mbar pressure levels at the terminator. The detected absorption agrees with that predicted by an 1000 K isothermal model, as well as with that predicted by a planetary-averaged temperature model.
Near-Sun Comet C/2019 Y4 (ATLAS) is the first member of a long-period comet group observed to disintegrate well before perihelion. Here we present our investigation into this disintegration event using images obtained in a 3-day {it Hubble Space Telescope} (hst) campaign. We identify two fragment clusters produced by the initial disintegration event, corresponding to fragments C/2019 Y4-A and C/2019 Y4-B identified in ground-based data. These two clusters started with similar integrated brightness, but exhibit different evolutionary behavior. C/2019 Y4-A was much shorter-lived compared to C/2019 Y4-B, and showed signs of significant mass-loss and changes in size distribution throughout the 3-day campaign. The cause of the initial fragmentation is undetermined by the limited evidence but crudely compatible with either the spin-up disruption of the nucleus or runaway sublimation of sub-surface supervolatile ices, either of which would lead to the release of a large amount of gas as inferred from the significant bluing of the comet observed shortly before the disintegration. Gas can only be produced by the sublimation of volatile ices, which must have survived at least one perihelion passage at a perihelion distance of $q=0.25$~au. We speculate that Comet ATLAS is derived from the ice-rich interior of a non-uniform, kilometer-wide progenitor that split during its previous perihelion. This suggests that comets down to a few kilometers in diameter can still possess complex, non-uniform interiors that can protect ices against intense solar heating.